

# Demande d'examen au cas par cas préalable à la réalisation d'une étude d'impact



Article R. 122-3 du code de l'environnement

Ce formulaire n'est pas applicable aux installations classées pour la protection de l'environnement

Ce formulaire complété sera publié sur le site internet de l'autorité administrative de l'Etat compétente en matière d'environnement

Avant de remplir cette demande, lire attentivement la notice explicative

#### Cadre réservé à l'administration

Date de réception Novembre 2015

Dossier complet le 42 Novembre 2015

N° d'enregistrement F07413P0116

# 1. Intitulé du projet

# 2. Identification du maître d'ouvrage ou du pétitionnaire

#### 2.1 Personne physique

Nom AUDOIN

Prénom Michel

## 2.2 Personne morale

Dénomination ou raison sociale

**AUDOIN** Yvette

Nom, prénom et qualité de la personne habilitée à représenter la personne morale

co-propriétaire, maître d'œuvre & d'ouvrage

RCS / SIRET

50274819700022

Forme juridique Bien propre

Joignez à votre demande l'annexe obligatoire n°1

# 3. Rubrique(s) applicable(s) du tableau des seuils et critères annexé à l'article R. 122-2 du code de l'environnement et dimensionnement correspondant du projet

| N° de rubrique et sous rubrique | Caractéristiques du projet au regard des sevils et critères de la rubrique                                                                                                              |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25                              | * Le projet concerne une augmentation de puissance de la centrale hydroélectrique du Moulin de la Borie sur la Vienne de 130 kW                                                         |
|                                 | nette à 250 kW nette soit 322 kW en puissance brute.  * Ce serait donc une installation d'une puissance inférieure à la limite administrative de 500 kW nécessitant une étude d'impact. |

# 4. Caractéristiques générales du projet

# Doivent être annexées au présent formulaire les pièces énoncées à la rubrique 8.1 du formulaire

# 4.1 Nature au projet

- \* Le projet initial consiste à la mise en conformité du barrage suite à l'arrêté de classement 1 & 2 de la Vienne qui impose de refaire une échelle à poissons et une vanne permettant d'assurer le transfert sédimentaire.
- \* Je profite de l'élaboration de ce dossier pour demander également une augmentation de puissance bien que dans l'immédiat je ne prévois pas de changer les turbines.
- \* Le projet intégrera donc tous les paramètres de la situation finale future.

#### 4.2 Objectifs du projet

Au delà de l'objectif initial de mise en conformité, l'objectif de l'étude du cas par cas est d'augmenter la puissance électrique produite:

\*\* Arrête d'exploitation actuel avec les + 20% de 2009:

Débit:6.6 m3/s.

Puissance nette: 130 kW Hauteur d'étiage: 2.54m.

# \*\* Projet:

Surélévation du plan d'eau amont de +20cm sans inondation des terrains.

Pose de 2 gros clapets diminuant les risques d'inondation par rapport à la situation actuelle.

Débit: 12m3/s

Hauteur d'étiage: 279.14m - 276.40m = 2.74m

Puissance brute: 322 kW = 12\*2.74\*9.81; Puissance nette: 250 kW

# 4.3 Décrivez sommairement le projet

# 4.3.1 dans sa phase de réalisation

- \* Il est pratiquement impossible de reconstruire une échelle à poissons en lieu et place de l'actuelle compte tenu des problème d'accès au site. Le projet est donc de déplacer le seuil du barrage au droit du bâtiment de la centrale actuelle afin de pouvoir reconstruire une nouvelle échelle à poissons et des clapets, conformément à la procédure déconstruction / reconstruction de la circulaire du 18/01/2013 du ministère de l'écologie et du Développement durable (page 11) qui prévoit ce cas de figure.
- \* Suite à plusieurs réunions, un dossier complet a été déposé au service le la Police de l'eau de la DDT.
- \* Le raccordement électrique HTA de ERDF a été refait en sous terrain en 2014, et il est dimensionné pour une puissance de 250 kW.

# 4.3.2 dans sa phase d'exploitation

En exploitation,

- \* La section de passage de l'eau au niveau des clapets sera de 18m² (pour un module de la Vienne de 9.15m3/s), Ces clapets asservis au niveau du plan d'eau amont légal diminueront les inondations des terrains avoisinants.
- \* La surface noyée sera augmentée de 8 139 m².
- \* Le volume supplémentaire de la retenue sera de 11 587 m3 en zone ombragé par de grands arbres limitant le réchauffement de l'eau.
- \* Le fonctionnement des turbines restera identique.

| 4.4.1 A quelle(s) procédure(s) administrati<br>La décision de l'autorité administrati<br>dossier(s) d'autorisation(s).                                                                                               | trative(s) d'autorisation le projet a-t-il été ou ser<br>ve de l'Etat compétente en matière d'envir                                                                                                                                                               | a-t-il soumis ?<br>ronnement devra être jointe au(x) |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| Le service instructeur est celu<br>d'examen                                                                                                                                                                          | i de la Police de l'eau à la DDT qui a d                                                                                                                                                                                                                          | éjà le dossier en cours                              |  |  |  |  |
| 2 x 3 x 4 x 27 4 x 3 1 4                                                                                                                                                                                             | e d'autorisation ce formulaire est rempli                                                                                                                                                                                                                         |                                                      |  |  |  |  |
| Afin de définir s'il est nécessai                                                                                                                                                                                    | re ou non de réaliser une étude d'impa                                                                                                                                                                                                                            | ct.                                                  |  |  |  |  |
| 4.5 Dimensions et caractéristiques du pro                                                                                                                                                                            | jet et superficie globale (assiette) de l'opération -                                                                                                                                                                                                             | préciser les unités de mesure utilisées              |  |  |  |  |
| Grandeu                                                                                                                                                                                                              | rs caractéristiques                                                                                                                                                                                                                                               | Valeur                                               |  |  |  |  |
| d'amenée de 125m et la constru<br>environ incluant 2 clapets de 6n                                                                                                                                                   | Les modifications sont:  ** la déconstruction du seuil de barrage 71m de long, du canal d'amenée de 125m et la construction d'un nouveau seuil de 30m environ incluant 2 clapets de 6m et 3m de long.  ** La surface de la retenue d'eau est augmentée de 8 139m² |                                                      |  |  |  |  |
| 4.6 Localisation du projet                                                                                                                                                                                           |                                                                                                                                                                                                                                                                   |                                                      |  |  |  |  |
| Adresse et commune(s) d'implantation                                                                                                                                                                                 | Coordonnées géographiques Long. 45 Long.                                                                                                                                                                                                                          | 48 34 Lat. 1 35 8                                    |  |  |  |  |
| Moulin de La Borie<br>Lieu dit: L'Usine<br>Saint Denis des Murs<br>87400                                                                                                                                             |                                                                                                                                                                                                                                                                   | °, 28° a) et b), 32°; 41° et 42°; _'" Lat°'_"        |  |  |  |  |
| <ul> <li>4.7.1 Si oui, cette installation ou cet o</li> <li>4.7.2 Si oui, à quelle date a-t-il été au</li> <li>4.8 Le projet s'inscrit-il dans un program</li> <li>Si oui, de quels projets se compose le</li> </ul> | me de travaux ?                                                                                                                                                                                                                                                   | Oui Oui Non                                          |  |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   |                                                      |  |  |  |  |

Pour l'outre-mer, voir notice explicative

| 5. S                                                                                                                                                                                                                                                                                                                       | ensibilii        | té enviror             | mementale de la zone d'implantation envisagée                                                               |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 5.1 Occupation des sols<br>Quel est l'usage actuel des sols sur le lieu de votre projet ?                                                                                                                                                                                                                                  |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
| Bois de ma propriété                                                                                                                                                                                                                                                                                                       |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
| Existe-t-il un ou plusieurs doc<br>concemés) réglementant l'oc                                                                                                                                                                                                                                                             | cument<br>cupati | s d'urbai<br>on des so | nisme (ensemble des documents d'urbanisme oui Non Non                                                       |  |  |  |  |  |  |  |
| Si ouĭ, întitulé et date                                                                                                                                                                                                                                                                                                   | L'arr            | êté d'ex               | ploitation préfectoral renouvelé le 14/09/2000.                                                             |  |  |  |  |  |  |  |
| d'approbation :<br>Précisez le  ou les                                                                                                                                                                                                                                                                                     | L'aut            | torisatio              | n de travaux de la Police de l'eau du 29/04/2009. (les + 20%).                                              |  |  |  |  |  |  |  |
| règlements applicables à la zone du projet                                                                                                                                                                                                                                                                                 |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            |                  |                        |                                                                                                             |  |  |  |  |  |  |  |
| Pour les rubriques 33° à 37°, le environnementale?                                                                                                                                                                                                                                                                         | ou les           | documer                | nts ont-ils fait l'objet d'une évaluation.  Oui Non                                                         |  |  |  |  |  |  |  |
| 5.2 Frieux environnementaux                                                                                                                                                                                                                                                                                                | dans le          | a zone d'i             | implantation envisagée :<br>ns utiles, notamment à partir des informations disponibles sur le site internet |  |  |  |  |  |  |  |
| nttp://www.developpement-                                                                                                                                                                                                                                                                                                  | durable          | gouv.fr/               | etude impact                                                                                                |  |  |  |  |  |  |  |
| Le projet se situe-t-il :                                                                                                                                                                                                                                                                                                  | Oui              | Non                    | Lequel/Laquelle ?                                                                                           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            |                  | Car 2 40 10            |                                                                                                             |  |  |  |  |  |  |  |
| dans une zone naturelle<br>d'intérêt écologique,                                                                                                                                                                                                                                                                           |                  | 6250                   | La zone ZNIEFE ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique,<br>faunistique et floristique-de                                                                                                                                                                                                                                                                     | oui              |                        | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de                                                                                                                                                                                                                     | oui              |                        | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique,<br>faunistique et floristique-de<br>type I ou II (ZNIEFF) ou                                                                                                                                                                                                                                         | oui              |                        | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope ?                                                                                                                                                                                             | oui              |                        | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de                                                                                                                                                                                                                     | oui              | non                    | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope ?                                                                                                                                                                                             | <del>o</del> ui  |                        | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope ?                                                                                                                                                                                             | eui              |                        | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope ?                                                                                                                                                                                             |                  |                        | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope?  en zone de montagne?                                                                                                                                                                        |                  | non                    | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope?  en zone de montagne?  sur le territaire d'une commune littorale?                                                                                                                            |                  | non                    | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope?  en zone de montagne?  sur le territoire d'une commune littorale?  dans un parc national, un parc naturel marin, une réserve naturelle (régionale                                            |                  | non                    | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope?  en zone de montagne?  sur le territoire d'une commune littorale?  dans un parc national, un parc naturel marin, une                                                                         |                  | non                    | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope?  en zone de montagne?  sur le territoire d'une commune littorale?  dans un parc national, un parc naturel marin, une réserve naturelle (régionale ou nationale) ou un parc naturel régional? |                  | non                    | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |
| d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ou couverte par un arrêté de protection de biotope?  en zone de montagne?  sur le territoire d'une commune littorale?  dans un parc national, un parc naturel marin, une réserve naturelle (régionale ou nationale) ou un parc                   |                  | non                    | La zone ZNIEFF ne semble concerner que la rive gauche                                                       |  |  |  |  |  |  |  |

| dans une aire de mise en valeur de l'architecture et du patrimoine ou une zone de protection du patrimoine architectural, urbain et paysager?                                       |     | □non             |                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| dans une zone<br>humide ayant fait l'objet<br>d'une délimitation ?                                                                                                                  |     | non              |                                                                                                                               |
| dans une commune couverte par un plan de prévention des risques naturels prévisibles ou par un plan de prévention des risques technologiques?  si oui, est-il prescrit ou approuvé? |     | n <del>o</del> n |                                                                                                                               |
| dans un site ou sur des sols<br>pollués ?                                                                                                                                           |     | nen              |                                                                                                                               |
| dans une zone de répartition<br>des eaux ?                                                                                                                                          |     | non              |                                                                                                                               |
| dans un périmètre de<br>protection rapprochée d'un<br>captage d'eau destiné à<br>l'alimentation humaine?                                                                            |     | <del>no</del> n  | le captage de la communauté de commune de St Léonard est 6.5km en aval. Toutes les installations sont en huile biodégradable. |
| dans un site inscrit ou<br>classé ?                                                                                                                                                 |     | non              |                                                                                                                               |
| Le projet se situe-t-il, dans ou<br>à proximité :                                                                                                                                   | Oui | Non              | Lequel et à quelle distance ?                                                                                                 |
| d'un site Natura 2000 ?                                                                                                                                                             | oui |                  | Haute vallée de la Vienne                                                                                                     |
| d'un monument historique<br>ou d'un site classé au<br>patrimoine mondial de<br>l'UNESCO?                                                                                            |     | non              |                                                                                                                               |

# 6. Caractéristiques de l'Impact potentiel du projet sur l'environnement et la santé humaine

# 6.1 Le projet envisagé est-il <u>susceptible</u> d'avoir les incidences suivantes ?

| Veuillez compléter le tableau suivant ; |                                                                                                                                                                                                                                                                                                                                                   | De quelle nature ? De quelle importance ? |                  |                                                                                                                                               |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Domaines                                | de l'environnement :                                                                                                                                                                                                                                                                                                                              | Oui                                       | Non              | De quelle nature ? De quelle importance ? Appréciez sommairement l'impact potentiel                                                           |
|                                         | engendre-t-il des<br>prélèvements<br>d'eau?                                                                                                                                                                                                                                                                                                       |                                           | non              |                                                                                                                                               |
| Ressources                              | impliquera-t-il des<br>drainages / ou des<br>modifications<br>prévisibles des<br>masses d'eau<br>souterraines ?                                                                                                                                                                                                                                   |                                           | n <del>o</del> n |                                                                                                                                               |
| Consultation                            | est-il excédentaire<br>en matériaux ?                                                                                                                                                                                                                                                                                                             |                                           | non              |                                                                                                                                               |
|                                         | est-il déficitaire en<br>matériaux ?  Si oui, utilise-t-il les<br>ressources naturelles<br>du sol ou du sous-<br>sol ?                                                                                                                                                                                                                            |                                           | non              |                                                                                                                                               |
| Milieu<br>naturel                       | est-il susceptible<br>d'entraîner des<br>perturbations, des<br>dégradations, des<br>destructions de la<br>biodiversité<br>existante : faune,<br>flore, habitats,<br>continuités<br>écologiques ?<br>est-il susceptible<br>d'avoir des<br>incidences sur les<br>zones à sensibilité<br>particulière<br>énumérées au 5.2 du<br>présent formulaire ? |                                           | . □ Pa           | urant la phase des travaux il y aura des perturbations<br>ar contre la nouvelle échelle à poissons devrait<br>néliorer la situation actuelle. |

|                               | Engendre-t-il la<br>consommation<br>d'espaces naturels,<br>agricoles, forestiers,<br>maritimes ? | Qui |             | ** Pas de réduction de surface agricole.  ** La réduction de surface forestier est de 8 139 m² moins la surface de la rivière actuelle soit 5 000 m² environ |
|-------------------------------|--------------------------------------------------------------------------------------------------|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | Est-il concerné par<br>des risques<br>technologiques ?                                           |     | -non        |                                                                                                                                                              |
| Risques<br>et<br>nuisances    | Est-il concerné par<br>des risques naturels ?                                                    |     | <u>n</u> ōn |                                                                                                                                                              |
|                               | Engendre-t-il des risques sanitaires ?  Est-il concerné par des risques sanitaires ?             |     | non         |                                                                                                                                                              |
| Commodités<br>de<br>voisinage | Est-il source de<br>bruit ?<br>Est-il concerné par<br>des nuisances<br>sonores ?                 | oui | non         | pendant les travaux mais pas en fonctionnement  Le bruit de l'écoulement de l'eau couvre tout les autres bruits                                              |
|                               | Engendre-t-il des<br>odeurs ?<br>Est-il concerné par<br>des nuisances<br>olfactives ?            |     | non         |                                                                                                                                                              |
|                               | Engendre-t-il des vibrations ?                                                                   |     | non         |                                                                                                                                                              |
|                               | Est-il concerné par<br>des vibrations ?                                                          |     | non         |                                                                                                                                                              |

|                          | Engendre-t-il des<br>émissions lumineuses ?<br>Est-il concerné par<br>des émissions<br>lumineuses ?                                  |   | non   |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|-------|--|--|
|                          | Engendre-t-il des<br>rejets polluants dans<br>l'air ?                                                                                |   | non   |  |  |
| Pollutions               | Engendre-t-il des<br>rejets hydrauliques ?<br>Si oui, dans quel<br>milieu ?                                                          | 0 | non   |  |  |
|                          | Engendre-t-il la<br>production<br>d'effluents ou de<br>déchets non<br>dangereux, inertes,<br>dangereux ?                             |   | □non  |  |  |
| Patrimoine /<br>Cadre de | Est-il susceptible de<br>porter atteinte au<br>patrimoine<br>architectural,<br>culturel,<br>archéologique et<br>paysager ?           |   | non   |  |  |
| vie /<br>Population      | Engendre-t-il des<br>modifications sur les<br>activités humaines<br>(agriculture,<br>sylviculture,<br>urbanisme /<br>aménagements) ? |   | ก็อีก |  |  |

| 6.2 Les in | ncidence | s du projet identifiées au 6.1 sont-elles susceptibles d'être cumulées avec d'autres projets connus ? |
|------------|----------|-------------------------------------------------------------------------------------------------------|
| Oul        | Non      | non <sub>Si out</sub> , décrivez lesquelles                                                           |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
| 6.3 Les in | ncidence | s du projet identifiées au 6.1 sont-elles susceptibles d'avoir des effets de nature transfrontière ?  |
| Oui        |          | non-Si oui, décrivez lesquels :                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          |                                                                                                       |
|            |          | 7. Auto-évaluation (facultatif)                                                                       |

Au regard du formulaire rempli, estimez-vous qu'il est nécessaire que votre projet fasse l'objet d'une étude d'impact ou qu'il devrait en être dispensé ? Expliquez pourquoi.

# Compte tenu que:

- \* Le projet est dans une zone très isolée, Les maisons ne sont pratiquement que des résidences secondaires et à plus de 100m.
- \* le projet ne génère aucune nuisance sonore.
- \* Le projet diminue le risque d'inondation des terrains amont par l'asservissement des clapets.
- \* Le seuil de barrage sera plus court et plus accessible.
- \* L'étude Natura 2000 (inclue dans le dossier de la Police de l'eau) démontre qu'il n'y a pratiquement aucun impact: pas de destruction de frayère, pas de moule perlière, .....
- \* Les bâtiments et la prise d'eau actuels ne sont pas modifiés.

  Le puissance demandée est inférieure au minimum imposant une étude d'impact (500 kW).
- \* La circulaire du Ministère de l'écologie du 18/01/2013 prévoit ce type de travaux de déconstruction/reconstruction afin d'améliorer la continuité écologique.
- \* Le seul impact pouvant générer une nuisance est l'augmentation de la surface de la retenue de 8139 m² avec un risque d'élévation de température. Mais comme toute cette surface sera en zone boisée, l'incidence sera limité voire nulle.
- \* En conclusion, je ne vois pas ce qui peut être impacté par ce projet qui devrait être dispensé d'étude d'impact.

#### 8.1 Annexes obligatoires

# Objet

- 1 L'annexe n°1 intitulée « informations nominatives relatives au maître d'ouvrage ou pétitionnaire » non publiée :
- 2 Un plan de situation au 1/25 000 ou, à défaut, à une échelle comprise entre 1/16 000 et 1/64 000 (Il peut s'agir d'extraits cartographiques du document d'urbanisme s'il existe);
- Au minimum, 2 photographies datées de la zone d'implantation, avec une localisation cartographique des prises de vue, l'une devant permettre de situer le projet dans l'environnement proche et l'autre de le situer dans le paysage lointain ;
- Un plan du projet <u>ou</u>, pour les travaux, ouvrages ou aménagements visés aux rubriques 5° a), 6° b) et d), 8°, 10°, 18°, 28° a) et b), 32°, 41° et 42° un projet de tracé ou une enveloppe de tracé;

Sauf pour les travaux, ouvrages ou aménagements visés aux rubriques 5° a), 6° b) et d), 8°, 10°, 18°, 28° a) et b), 32°, 41° et 42°: plan des abords du projet (100 mètres au minimum) pouvant prendre la forme de photos

5 aériennes datées et complétées si nécessaire selon les évolutions récentes, à une échelle comprise entre 1/2 000 et 1/5 000. Ce plan devra préciser l'affectation des constructions et terrains avoisinants ainsi que les canaux, plans d'eau et cours d'eau;

# 8.2 Autres annexes volontairement transmises par le maître d'ouvrage ou pétitionnaire

Veuillez compléter le tableau ci-joint en indiquant les annexes jointes au présent formulaire d'évaluation, ainsi que les parties auxquelles elles se rattachent

#### Objet

Fichiers joints:

2015 10 27 dossier mise ne conformité de la Borie V2

2015 10 27 lettre d'accompagnement au Préfet

arrêté d'exploitation de 2000

La lettre d'autorisation de travaux de 2009

La dernière page de ce dossier signée et scannée

Les levés de géomètre

La notice Natura 2000

Un fichier de calcul excel

L'étude réalisée par Hydro-M de 2007

L'information nominative relative au dossier La Borie

Je certifie sur l'honneur l'exactitude des renseignements ci-dessus

X

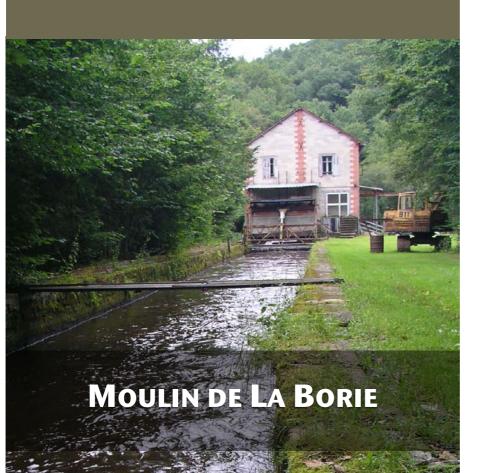
If Met

Fait à

Couzeix,

e, 08/11/2015

Signature


# ÉTUDE D'OPTIMISATION ÉNERGÉTIQUE





**DÉPARTEMENT:**Haute-Vienne

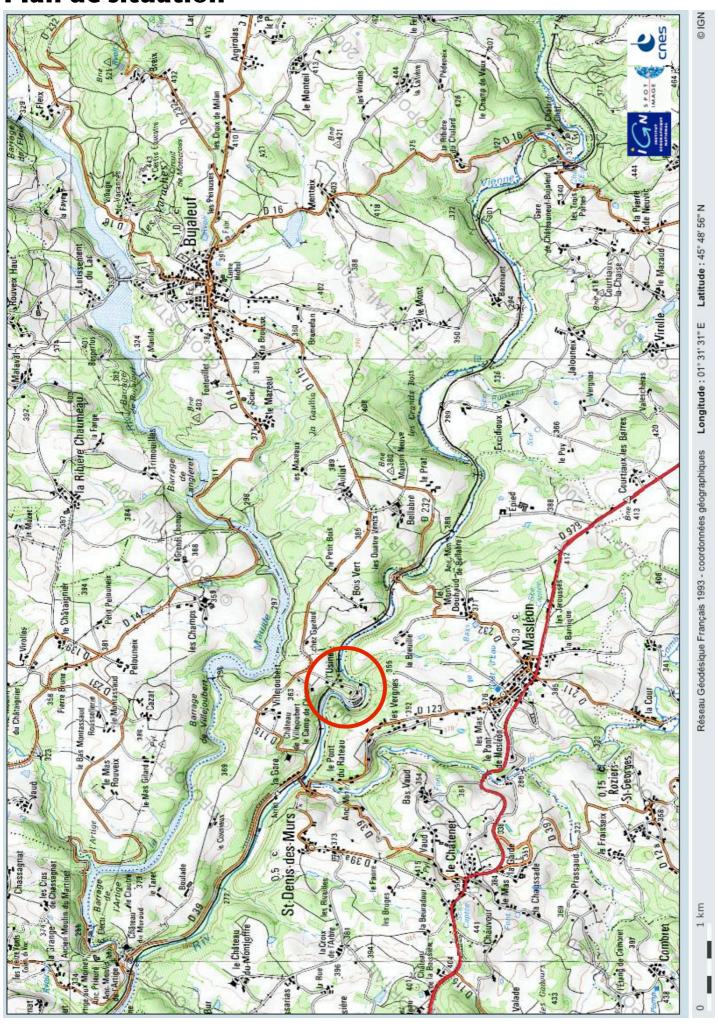
COMMUNE: ST-DENIS-DES-MURS



Janvier 2008



6 rue Clémence Isaure 31 000 TOULOUSE tel 05 34 45 28 10 contact@hydro-m.fr




# **TABLE DES MATIÈRES**

| 1.                   | Introduction                                          |          |
|----------------------|-------------------------------------------------------|----------|
| 1.1.                 | Contexte                                              | 1        |
| 2.                   | Ressource Hydrologique                                | 3        |
| 2.1.                 | Milieu physique                                       | 3        |
| 2.1.1.               | Bassin de la Vienne                                   | _        |
| 2.1.2.               | Caractéristiques du bassin versant de la Vienne       | 4        |
| 2.1.3.               | Climat                                                | 5        |
| 2.2.                 | Remarque réglementaire : classement                   | 6        |
| 2.3.                 | Hydrologie                                            | 7        |
| 2.3.1.               | Réseau hydrographique                                 | 7        |
| 2.3.2.               | Régime de la Vienne                                   |          |
| 2.3.3.               | Station hydrométriques de référence sur la Vienne     | 10       |
| 2.3.4.               | Reconstitution de l'hydrologie à la prise d'eau       | 11       |
| 3∙                   | Potentiel énergétique                                 | 21       |
| 3.1.                 | Outil de calcul du potentiel de production : NewPCH   | 21       |
| 3.2.                 | Notion de « productible » = potentiel de production   | 21       |
| 3.3.                 | Hypothèses de simulation du projet                    | 22       |
| 3.3.1.               | Conditions actuelles d'exploitation                   | 22       |
| 3.3.2.               | Pertes de charge dans le canal d'amenée               | 22       |
| 3.3.3.               | Variation de la chute nette avec le débit             | 22       |
| 3.3.4.               | Calage du modèle de calcul du potentiel de production | 26       |
| 3∙4∙                 | Résultats                                             | 27       |
| 4.                   | Bilan et recommandations                              | 31       |
| Anna                 | exes                                                  | 33       |
|                      |                                                       |          |
| Annexe 1<br>Annexe 2 |                                                       | 35<br>37 |
| Annexe 3             | , ,                                                   | 45       |
| Annexe 4             | , ,                                                   | 53       |

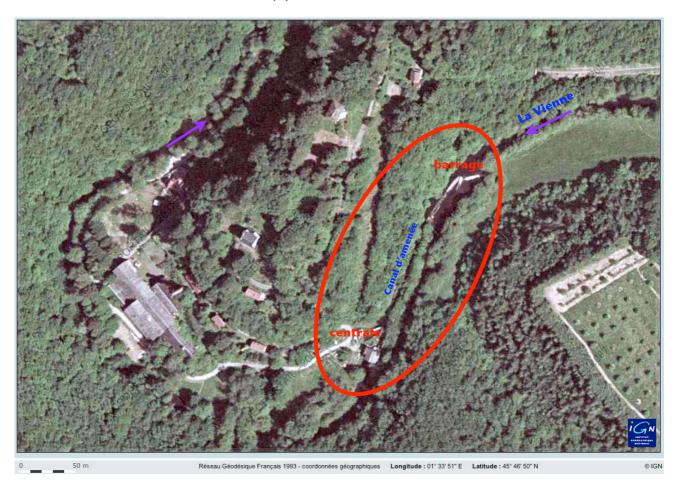


# Plan de situation



# Introduction

# 1.1 Contexte


La centrale de La Borie est implantée sur la Vienne en amont de Limoges, sur le site d'une ancienne usine d'extrait de tanin pour le traitement des peaux, démantelée en 1950.

La microcentrale a changé de propriétaire en 2002 ; le droit d'eau a été transféré au nouveau propriétaire le 13 juin 2002 (Textes des arrêtés en annexe 1).

Son exploitation est autorisée par l'arrêté préfectoral du 14 septembre 2000 pour une durée de 40 ans. La puissance administrative autorisée (puissance maximale brute) est de 108 kW. Elle correspond à un débit dérivé maximum de 5,5 m³/s sous une chute maximale brute de 2 m.

Le nouveau propriétaire souhaite rénover l'équipement actuel qui est vétuste et envisage l'augmentation de sa puissance.

C'est dans ce cadre prospectif que s'inscrit le présent dossier d'optimisation énergétique. L'objectif est de préciser la ressource hydrologique réellement disponible et de la confronter au potentiel du site afin d'étudier les possibilités d'augmentation de la production par la réduction des pertes de charges et éventuellement l'augmentation du débit d'équipement.





#### Particularité du bassin versant

La superficie du bassin versant qui alimente le Moulin de La Borie est évalué à 444 km².

#### En effet:

- la base de donnée nationale Banque HYDRO indique que la station hydrométrique d'Eymoutiers, située en amont, draine un bassin d'une superficie de 369 km², et,
- nous avons déterminé par planimétrie sur la carte IGN 1/100 000e le bassin versant supplémentaire compris entre cette station et le moulin : il s'élève à 75 km².

Ce bassin offre une particularité: l'importance des aménagements EDF situés en amont. Ces aménagements, mis en place dans les années 50, comportent plusieurs barrages implantés dans le haut bassin de la Vienne. Associés à un système de conduites et de canaux, ils permettent de dériver un part importante des eaux de la Vienne amont vers le barrage-réservoir de Vassivières, implanté dans un bassin versant adjacent, celui de la Maulde.

La ressource en eau dont bénéficie le Moulin de La Borie est donc largement amputée par les équipements EDF de l'amont.

# Ressource Hydrologique

# 2.1 Milieu physique

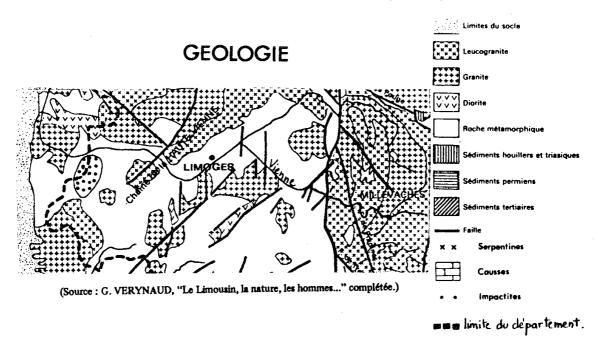
# 2.1.1 Bassin de la Vienne

Le bassin versant de la Vienne couvre quelque 21 000 km². Il se présente globalement comme un rectangle orienté sud-est / nord-ouest, d'environ 100 km x 200 km.

L'extrémité sud-est constitue le secteur des sources, dans le Limousin, alors que l'extrémité nord-ouest constitue la zone de confluende des principaux cours d'eau structurants (Vienne, Clain, Creuse, Gartempe). Au débouché du bassin, la Vienne conflue avec la Loire à Candes-Saint Martin, en aval de Tours.

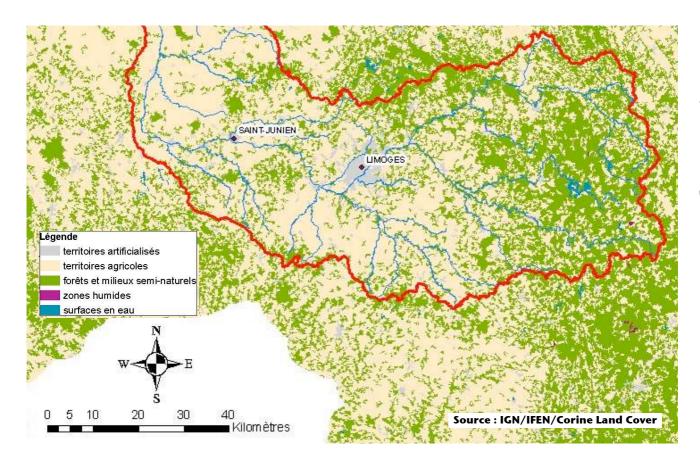


# 2.1.2 Caractéristiques du bassin versant de la Vienne


# Relief du bassin de la Vienne amont



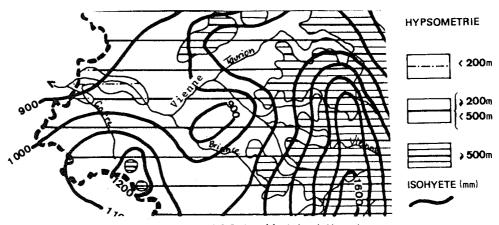
# Géologie


La géologie du bassin de la Vienne est contrastée avec, en amont, le socle cristallin (imperméable) dans le Limousin, et les terrains sédimentaires (perméables) en Poitou-Charentes. La mobilisation et l'usage des ressources en eau découlent directement des caractéristiques de ces milieux.

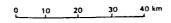
Le bassin du Moulin de la Borie est située entièrement sur le socle cristallin imperméable, essentiellement formé de micaschistes, gneiss et granites avec filons.



# Occupation du sol


Le bassin versant alimentant le Moulin de la Borie présente une dominance de forêt, les surfaces agricoles n'arrivant qu'en deuxième position. De ce fait, la pression des prélèvements pour l'irrigation en été se fait moins sentir qu'en aval du confluent de la Maulde où les terres agricoles deviennent dominantes.



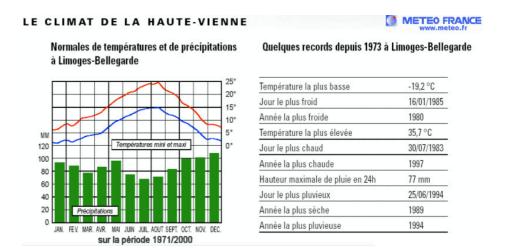

# 2.1.3 Climat

# **Précipitations**

Le gradient des précipitations est calqué sur la structure du relief, la partie la plus arrosée étant le secteur des sources, au sud, adossé au Massif Central, dans le limousin : I 600 mm en moyenne annuelle sur le plateau de Millevaches et 650 mm dans le Chatelleraudais.



(Source : "Atlas climatique du Limousin" 1964-1978. Station météorologique de Limoges.)






Il pleut abondamment sur le Limousin, moyenne montagne, qui appartient au domaine océanique.

Dans le secteur de la Vienne Amont (Vienne, Taurion, Briance) le gradient décroissant est clairement dans le sens est-ouest, les cumuls annuels s'échelonnant entre 1 000 et 1 500 mm.

Le bassin versant de la Vienne amont qui alimente le moulin de la Borie est dans le secteur le plus arrosé du bassin, avec les isohyetes I 200 à I 500 mm.



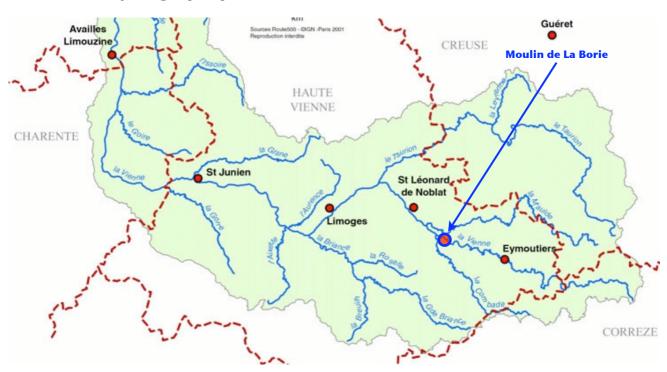
La pluviométrie est généralement bien répartie dans l'année et les contrastes faibles comme l'indique le graphique Météo-France pour la station de Limoges.

Mais les moyennes de précipitations cachent une grande variété de situations au cours d'une même année et de grandes variations d'une année à l'autre. En effet, en règle générale, dans une décennie, on compte une année très pluvieuse (2 000 mm à Bugeat) et une année sèche. Entre ces deux années, les quantités d'eau tombées sont inégales d'une année à l'autre : la variabilité atteint 30 à 50%.

# 2.2 Remarque réglementaire : classement

Tout le parcours de la Vienne fait l'objet d'un classement pour les poissons migrateurs par les décrets du 1er avril 1905 et du 27 avril 1995 :

- anguille et truite fario : toute la Vienne depuis ses sources jusqu'au confluent de la Creuse
- lamproie, alose, truite de mer : du pont de Moussac-sur-Vienne (en aval de Confolens) jusqu'au confluent de la Creuse
- ombre : depuis le confluent avec la Maulde jusqu'à Limoges.


Le site du Moulin de la Borie est concerné par le classement pour l'anguille et la truite fario.

Sur les cours d'eau classés, la loi pêche prévoit l'obligation de mettre en place des dispositifs assurant la libre circulation des poissons migrateurs dans un délai de 5 ans. Si le classement est complété par un arrêté fixant la liste des espèces migratrices, l'obligation porte sur tous les ouvrages (anciens et nouveaux).

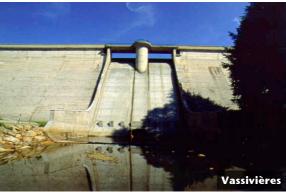
Le barrage de La Borie est équipé d'une échelle à poissons à ralentisseurs qui satisfait à l'obligation réglementaire.

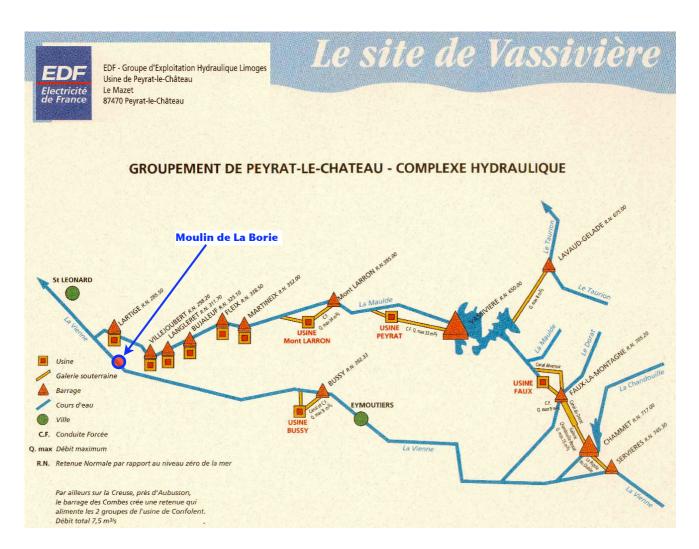
# 2.3 Hydrologie

# 2.3.1 Réseau hydrographique



# 2.3.2 Régime de la Vienne


# Régime


Le régime de la Vienne est un régime pluvial assez classique avec un maximum en hiver et un minimum en été. Les effets de stockage par la neige et le gel sont assez modestes car la couverture de neige hivernale est généralement de faible importance et de courte durée.

# Artificialisation des débits

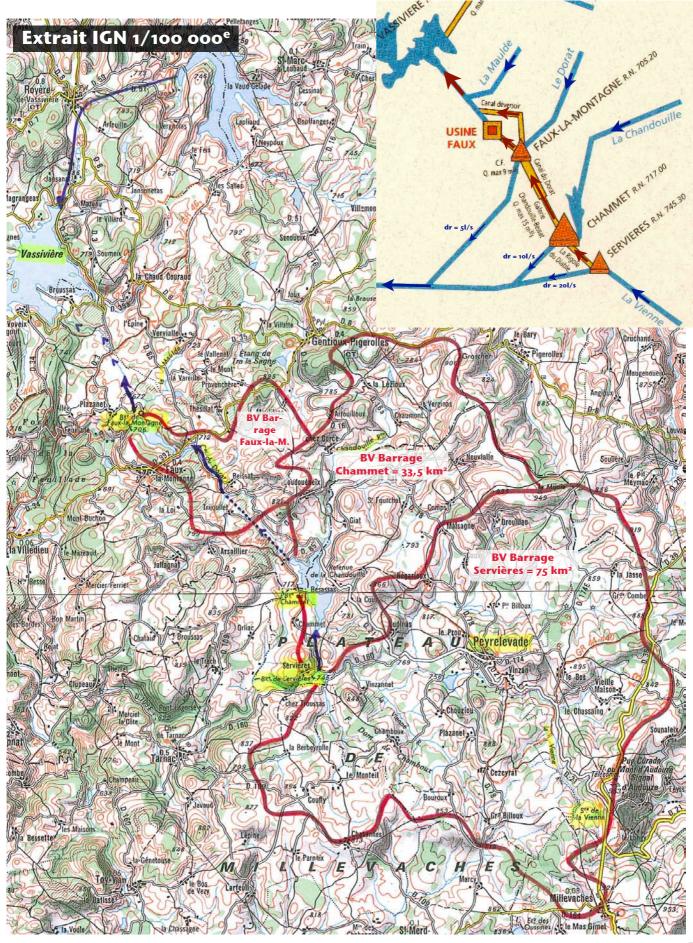
Le haut bassin de la Vienne, y compris la Maulde et le Taurion font l'objet d'un important aménagement hydroélectrique EDF avec des retenues de stockage et transferts d'eau inter-bassins appelé "groupement de Peyrat-le-Château / Vassivières".







## Transferts de bassin EDF


Il existe plusieurs transferts d'eau inter-bassins dans le massif. Une part des eaux de la Vienne en amont du Moulin de La Borie est transférée par EDF vers le lac de Vassivière, dans la vallée de la Maulde. Les prises d'eau sont au niveau des lacs de Servières, Chammet et Faux-la-Montagne.

La retenue de Vassivières qui structure l'ensemble des stocks et transferts d'eau de la Vienne amont, la Maulde et le Taurion a été mise en service en 1950. Le tableau suivant permet de mettre en évidence les bassins versants et les volumes mis en jeu.

| Nom retenue             | Volume utile<br>(Mm³) | Bassin<br>versant          | Débit<br>Réservé* | BV naturel amont (km²) |
|-------------------------|-----------------------|----------------------------|-------------------|------------------------|
| Vassivières             | 96                    | Maulde                     | -                 | 158                    |
| Servières               | 0,1                   | Vienne amont               | 20 l/s            | 75                     |
| Chammet                 | 3,4                   | Chandouille (Vienne amont) | 10 l/s            | 33,5                   |
| Faux-la-Montagne 0,7    |                       | Dorat (Vienne amont)       | 5 l/s             | 10,5                   |
| Lavaud-Gelade (hors BV) | 9,5                   | Taurion                    | -                 | 46                     |

\*: débit minimal laissé dans le cours d'eau au pied du barrage

Il existe également d'autres transferts d'eau dans le bassin de la Vienne mais qui n'influencent pas la ressource hydrologique du Moulin de La Borie (transfert EDF Taurion-Maulde, transferts AEP Gartempe-Vienne, en aval).



#### La concession EDF

Les règles de transfert d'eau depuis les barrages de Servières, le Chammet et Fauxla-Montagne sont régis par le décret du 14 février 1978, décret modifiant le décret de concession du 6 octobre 1955 pour les centrales de Peyrat-le-Château (chute de Vassivières) et Faux-la-Montagne.

Le cahier des charges du décret de 1978 fixe les débit maximums dérivés de la Vienne vers la Maulde ainsi que les débits réservés au droit des 3 barrages du bassin de la Vienne amont (Servières, le Chammet et Faux-la-Montagne) :

| Nom retenue      | Nom retenue Débit dérivé maxi (m³/s) |        | BV naturel amont (km²) | Module naturel<br>(m³/s) |  |
|------------------|--------------------------------------|--------|------------------------|--------------------------|--|
| Servières        | 18 m³/s                              | 20 l/s | 75                     | 2,25 m³/s                |  |
| Chammet          | 17 m³/s                              | 10 l/s | 33,5                   | 1,00 m³/s                |  |
| Faux-la-Montagne | 20 m³/s dont 8 m³/s par la centrale  | 5 l/s  | 10,5                   | 0,32 m³/s                |  |
| TOTAL            | -                                    | 35 I/s | I I 9 km²              | 3,6 m³/s                 |  |

Les débits dérivé maximums (17 à 20 m³/s correspondent à des débits de crue). Dans la dernière colonne du tableau précédent, nous présentons le module calculé à partir du débit spécifique de 30 l/s/km² donné par la Banque HYDRO à station hydrométrique de Peyrelevade. Nous pouvons en déduire que les débits réservés laissés dans le Vienne (Servières) et dans la Chandouille (Chammet) correspondent au centième du module naturel seulement (1%). Pour Le Dorat (Faux-la-Montagne) le débit réservé atteint 1,5% du module.

Finalement, cette concession permet à EDF de transférer la totalité des eaux produites par les 119 km² de bassin versant amont, y compris la presque totalité des eaux de crue, à l'exception d'un débit réservé correspondant au centième du module naturel.

Un débit réservé correspondant à la réglementation du Code de l'Environnement serait de 360 l/s sur cette partie de bassin. Par rapport à la réglementation, le débit réservé actuel représente un déficit de 325 l/s.

# 2.3.3 Station hydrométriques de référence sur la Vienne

Le tableau suivant dresse la liste des stations hydrométriques existantes sur la Vienne à proximité du moulin de La Borie (fiches Banque HYDRO en <u>annexe 2</u>). Elles y sont classées d'amont vers l'aval et leur position relative aux affluents et au moulin de La Borie est identifiée :

| Station                         | Code<br>Hydro        | Superficie BV     | Altitude station | Période<br>dispo    | Module<br>(m³/s) | Module spécifique<br>(I/s/km²) |  |  |
|---------------------------------|----------------------|-------------------|------------------|---------------------|------------------|--------------------------------|--|--|
| Peyrelevade (Servières)         | L0010610             | 58,5 km2          | 618 m            | 1957-2007           | 1,8              | 30,4                           |  |  |
| Peyrelevade (Rigole du Diable)* | L0010620             | 71 km2            | 744 m            | 1969-2006           | 2                | 28,4                           |  |  |
| Eymoutiers                      | L0050630             | 369 km2           | 400 m            | 1994-2007           | 6,7              | 18,1                           |  |  |
|                                 | Moulin de l          | La Borie - BV = 4 | 44 km² (= B      | V Eymoutiers + 75 I | cm²)             |                                |  |  |
|                                 | Confluent o          | ie la Maulde      |                  |                     |                  |                                |  |  |
| St-Léonard-de-Noblat (Sempinet) | L0140620             | 997 km2           | 264 m            | 1968-2000           | 22,2             | 22,2                           |  |  |
| St-Priest-Taurion               | L0140610             | 1156 km2          | 238 m            | 1943-2007           | 23,6             | 20,4                           |  |  |
|                                 | Confluent du Taurion |                   |                  |                     |                  |                                |  |  |
| Le Palais-sur-Vienne            | L0400610             | 2296 km2          | 226 m            | 1923-2007           | 43,8             | 19,1                           |  |  |
| Limoges (Pont Neuf)             | L0410610             | 2320 km2          | 217 m            | 1999-2007           | Non disponible   |                                |  |  |

<sup>\*:</sup> la fiche de station banque HYDRO indique:

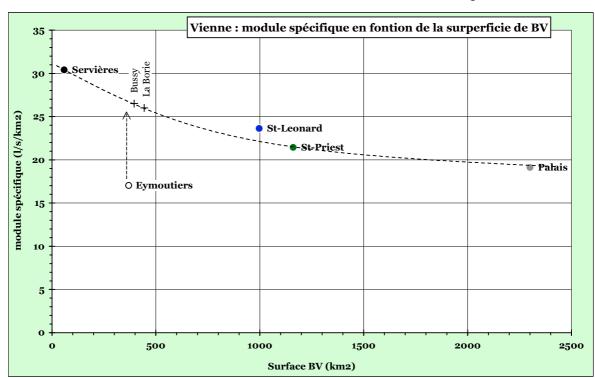
<sup>&</sup>quot;LES DEBITS PUBLIES REPRESENTENT LES DEBITS DE LA VIENNE DERIVES A LA PRISE D'EAU DE LA RIGOLE DU DIABLE VERS LA RESERVE DU CHAMMET".

Ces débits sont transférés vers le bassin de la Maulde : il s'agit donc des débits dont la Vienne amont est amputée



# 2.3.4 Reconstitution de l'hydrologie à la prise d'eau

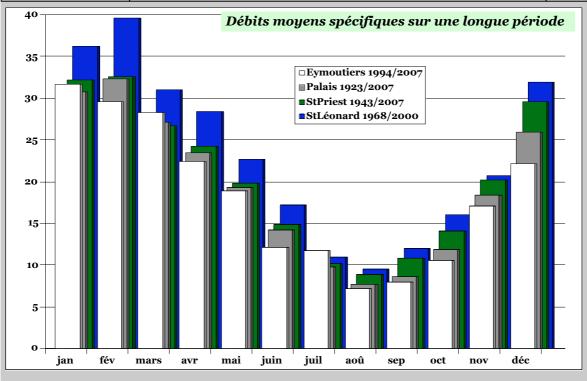
# Débit naturel / débit influencé


Comme le montrent les paragraphes précédents, les aménagements hydroélectriques EDF de l'amont amputent une part importante de la ressource hydrologique au droit du Moulin de La Borie. Le bassin versant alimentant le moulin étant de 444 km², et la les eaux détournées vers la Maulde étant la production d'un bassin versant de 119 km², la part détournée correspond à 27% environ de la ressource naturelle.

La ressource réellement disponible correspond à celle qui est mesurée actuellement (et depuis 1950) à la station d'Eymoutiers à laquelle nous devons ajouter la production du bassin versant intermédiaire entre la station et le moulin.

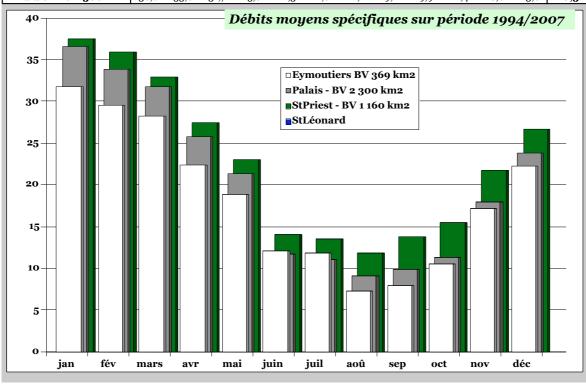
Par contre, la ressource théorique naturelle doit être recalculée en tenant compte des transferts de bassin vers la Maulde. Le débit moyen naturel est donc supérieur au débit qui passe effectivement au droit du moulin. Pourtant, c'est le débit naturel qui sert de référence à la détermination du débit réservé selon le Code de l'Environnement. Il est donc important de le déterminer avec précision.

A titre d'illustration, les graphiques de la page suivante montrent que les débits spécifiques (débit rapporté à l'unité de surface de bassin versant) mesurés à la station d'Eymoutiers sont systématiquement inférieurs aux débit spécifiques des stations situées plus en aval. C'est la signature de l'amputation des débits par l'amont. En effet, naturellement, les débits spécifiques décroissent de l'amont vers l'aval du fait du gradient positif des précipitations avec l'altitude.


Le graphique suivant montre l'augmentation progressive du débit spécifique naturel sur le bassin lorsque l'on se rapproche des sources, donc les secteurs les plus abondamment arrosés par les pluies. Les points indiqués correspondent aux valeurs données par les stations hydrométriques. Le débit spécifique naturel à Eymoutiers devrait s'établir à 27 l/s/km² environ au lieur des 18 l/s/km² enregistrés.






Débits moyens spécifiques sur une longue période

| = to the magnitude of the graph and the standard for the |      |      |      |      |      |      |      |     |      |      |      |      |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|-----|------|------|------|------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | jan  | fév  | mars | avr  | mai  | juin | juil | aoû | sep  | oct  | nov  | déc  | année |
| Eymoutiers 1994/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31,7 | 29,5 | 28,2 | 22,4 | 18,9 | 12,1 | 11,8 | 7,3 | 7,9  | 10,5 | 17,1 | 22,2 | 18,1  |
| StLéonard 1968/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36,2 | 39,6 | 31,0 | 28,4 | 22,8 | 17,3 | 10,9 | 9,5 | 12,1 | 16,0 | 20,7 | 31,9 | 23,0  |
| StPriest 1943/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32,1 | 32,6 | 26,7 | 24,2 | 19,8 | 14,9 | 10,2 | 8,8 | 10,8 | 14,1 | 20,3 | 29,5 | 20,4  |
| Palais 1923/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30,8 | 32,4 | 27,1 | 23,4 | 19,3 | 14,2 | 9,8  | 7,7 | 8,6  | 11,8 | 18,4 | 26,0 | 19,1  |



Débits moyens spécifiques sur période 1994/2007

|                         | jan  | fév  | mars | avr  | mai  | juin | juil | aoû  | sep  | oct  | nov  | déc  | année |
|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Eymoutiers BV 369 km2   | 31,7 | 29,5 | 28,2 | 22,4 | 18,9 | 12,1 | 11,8 | 7,3  | 7,9  | 10,5 | 17,1 | 22,2 | 18,1  |
| StLéonard               |      |      |      |      |      |      |      |      |      |      |      |      |       |
| StPriest - BV 1 160 km2 | 37,5 | 35,9 | 33,0 | 27,5 | 23,0 | 14,0 | 13,5 | 11,8 | 13,8 | 15,4 | 21,7 | 26,6 | 22,8  |
| Palais - BV 2 300 km2   | 36,6 | 33,8 | 31,7 | 25,8 | 21,3 | 11,6 | 11,1 | 9,1  | 9,9  | 11,4 | 18,0 | 23,8 | 20,3  |



Les graphiques de la page précédente montrent que les débits spécifiques enregistrés mois par mois à Eymoutiers sont systématiquement inférieurs à ceux qui sont enregistrés à St-Priest (en aval du confluent de la Maulde). Ceci signifie bien que les transferts de bassin depuis la Vienne amont vers la Maulde ont lieu toute l'année, y compris au plein cœur de l'étiage, aux mois d'août et septembre.

#### Module naturel et débit réservé

Le graphique montrant la relation entre débit spécifique et superficie de bassin versant permet de déterminer le débit spécifique naturel au moulin de La Borie : 26 l/s/km². En appliquant cette valeur aux 444 km² de bassin, on obtient un **module naturel au moulin de 11,5 m³/s**.

Le débit réservé du moulin, conformément au code de l'Environnement devrait donc s'établir à 1,15 m³/s (1 150 l/s).

Cette valeur est cohérente avec le débit réservé associé à la centrale EDF de BUSSY qui est égal à 1,1 m³/s pour un bassin versant de 395 m³/s (débit spécifique voisin de de 27 l/s/km²).

Par contre l'autorisation d'exploiter la centrale du moulin de La Borie mentionne un débit réservé de 1,25 m³/s ce qui apparaît légèrement sur-évalué par rapport du débit réglementaire conforme au code de l'Environnement.

# Reconstitution de la ressource hydrologique effective

Le modèle de calcul du potentiel de production s'appuie sur une chronique de débits journaliers reconstituée au droit de la centrale la plus longue possible.

La qualité de la chronique des données hydrologiques journalières que l'on utilise est déterminante pour le résultat final. Les informations de base sont issues des stations de jaugeage dont les enregistrements sont stockés dans la Banque HYDRO du Ministère de l'Environnement, Direction de l'eau.

Les stations hydrométriques et les séries disponibles figurent dans le tableau de la page 10.

Afin de reconstituer la chronique, nous n'utiliserons pas de station située en aval du confluent de la Maulde car elles sont influencées par la gestion du barrage-réservoir de Vassivières (96 millions de mètres cubes de stock utile) qui est en mesure de modifier sensiblement le régime des écoulements par transferts inter-saisons.

Nous devons donc nous appuyer sur les stations jaugeant la Vienne en amont du moulin, c'est-à-dire les stations d'Eymoutiers et de Peyrelevade.

La station d'Eymoutiers offre une chronique un peu trop courte pour être pertinente (1999-2007). Par contre, Peyrelevade existe depuis 1957.

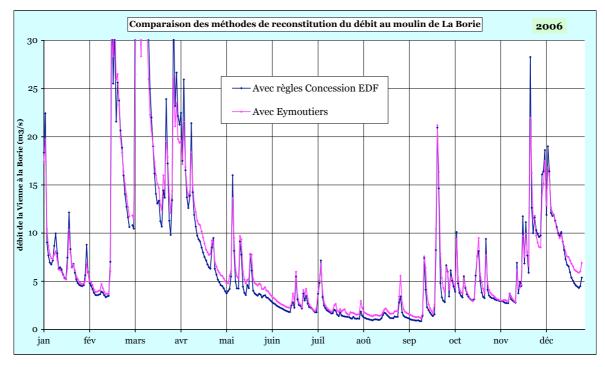
#### Période 1999-2007

Nous reconstituons le débit au moulin de La Borie en additionnant le débit mesuré à Eymoutiers (BV 369 km²) et un débit de type naturel obtenu par le débit de la station de Peyrelevade (BV 58,5) affecté au BV intermédiaire Eymoutiers/La-Borie (75 km²) assorti d'une correction de débit spécifique moyen de 26/30,4 :

 $Qj_{LaBorie} = Qj_{Eymoutiers} + 75/58,5 \times 26/30,4 \times Qj_{Peyrelevade}$ 

Soit :  $Qj_{LaBorie} = Qj_{Eymoutiers} + 1,096 \times Qj_{Peyrelevade}$ 




#### Période 1969-1998

Nous reconstituons le débit au moulin de La Borie avec le débit de la Vienne mesuré à Peyrelevade (L0010610, BV 58,5) affecté au BV total de La Borie (444 km²), assorti d'une correction de débit spécifique moyen de 26/30,4 puis auquel on ampute le débit transféré vers Vassivières en appliquant les règles de la concession EDF sur le bassin intercepté (119 km²) :

 $\begin{aligned} Q_{jLaBorie} &= 444/58,5 \times 26/30,4 \times Q_{jPeyrelevade} \text{ - transfert EDF (sur } Q_{jPeyrelevade} \text{ seul)} \\ \text{Soit : } Q_{jLaBorie} &= 6,491 \times Q_{jPeyrelevade} \text{ - transfert EDF (sur } Q_{jPeyrelevade} \text{ seul)} \end{aligned}$ 

Le débit de la Rigole du Diable mesuré à la station Peyrelevade/L0010620 nous permet de vérifier la cohérence de l'application des règles de transfert EDF. Le débit "transfert EDF" doit au moins être égal à cette valeur.

Afin de valider la seconde méthode, nous avons comparé les résultats donnés par les deux méthodes. A titre d'exemple, le graphe suivant donne la comparaison des résultats pour l'année 2006 :

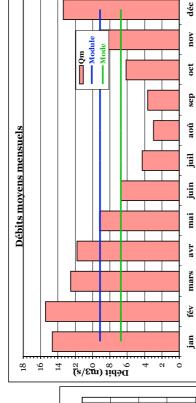


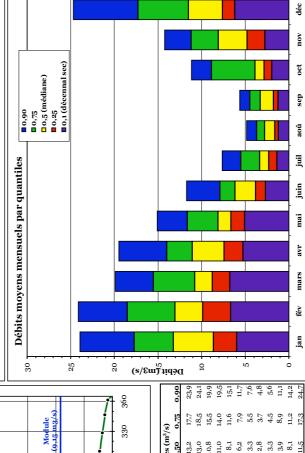
Les résultats étant sensiblement identiques, nous considérerons ces méthodes comme valides.

projet imprimé le 8/01/08

# Débits caractéristiques (chronique de 39 ans)

# Site: Moulin de La Borie Hydrologie reconstituée à la prise d'eau : débits classés, moyennes, étiage


Site : Vienne à Moulin de La Borie (surface BV = 444 km2)


Période prise en compte pour l'analyse hydrologique : 1969 à 2007 dont 39 années valides prises en compte sur cette période Courbe des débits classés

Débits classés

Station HYDRO choisie pour la reconstitution : Reconstitution complexe (voir rapport) Formule appliquée : Reconstitution complexe (voir rapport)

Logiciel NewPCH v2.1 B1dev∂





330

300

270

240

210

180

150

120

90

9

30

Mode (6,75 m3

21174% 1148% 1103% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003% 1003%

Débit (m3/s)

444,1 19,3 16,0 11,8 11,8 10,5 9,5 8,5 7,6

Occurrence

30

481% 280%

jours / an

Quantiles (m3/s)

| Débits | m <sup>3</sup> /s | 14,6                             | 15,4    | 12,5  | 11,8  | 9,5  | 6,7  | 4,3     |  |
|--------|-------------------|----------------------------------|---------|-------|-------|------|------|---------|--|
|        |                   | janvier                          | février | mars  | avril | mai  | nini | juillet |  |
|        |                   |                                  |         | •     |       |      |      |         |  |
|        |                   | ge (m3/s)                        |         | VCN10 | 1,25  | 0,75 | 0,47 |         |  |
|        |                   | caractéristiques d'étiage (m3/s) |         | QMNA  | 1,89  | 1,24 | 96'0 |         |  |
|        |                   | caracté                          |         |       |       |      |      |         |  |

| janvier                        | février | mars  | avril | mai  | juin | juillet | août |
|--------------------------------|---------|-------|-------|------|------|---------|------|
|                                |         |       |       |      |      |         |      |
|                                |         |       |       |      |      |         |      |
| e (m3/s)                       |         | VCN10 | 1,25  | 0,75 | 0,47 |         |      |
| ractéristiques d'étiage (m3/s) |         | QMINA | 1,89  | 1,24 | 96'0 |         |      |
| ractér                         |         |       |       |      |      |         |      |

| Débits caractéristiques d'étiage (m3/s) |      |       |
|-----------------------------------------|------|-------|
|                                         | QMNA | VCN10 |
| 1an/2                                   | 1,89 | 1,25  |
| 1an/5                                   | 1,24 | 0,75  |
| 1an/10                                  | 96'0 | 0,47  |

Logiciel NewPCH® • HYDRO-M 2005

6,2 3,3 3,3 3,9 8,1

4,1 2,1 2,1 7,2 6,1 9,1

9,6 6,7 8,2 13,8 20,8 30,1

4,3 3,0 3,6 6,1 9,2

octobre

15,2

8,4,1

La synthèse donnée dans la page précédente présente les débits moyens mensuels, les quantiles, la courbe des débits classés et les débits caractéristiques d'étiage.

#### **Module**

Le module<sup>i</sup> interannuel s'établit à 9,15 m<sup>3</sup>/s.

Le mode<sup>ii</sup> ou médiane s'établit à 6,75 m<sup>3</sup>/s.

# Répartition annuelle

La répartition est de type pluvial océanique classique avec un maximum centré sur l'hiver, en février, et un étiage centré sur l'été, en août.

# Débits d'étiage

QMNA<sup>iii</sup> moyen = 1,9 m<sup>3</sup>/s, QMNA quinquennal = 1,25 m<sup>3</sup>/s VCN10<sup>iv</sup> moyen = 1,25 m<sup>3</sup>/s,VCN10 quinquennal = 0,75 m<sup>3</sup>/s

# Variations interannuelles depuis 1969 (39 ans)

La fiche de la page suivante fait apparaître les débits moyens mensuels en annuels sur toute la chronique reconstituée (39 ans).

On observe que les valeurs moyennes masquent des écarts importants d'une année à l'autre :

- Deux années sont particulièrement sèches, avec une moyenne proche de 5 m³/s : 1989 et 2005,
- Trois années présentent une ressource très abondante, avec une moyenne proche de 14 m3/s : 1981, 1988, 1994

Le calcul de la moyenne glissante sur 10 années consécutives met en évidence les périodes sèches et les périodes humides :

- Les 10 dernières années correspondent à la décennie la plus sèche de la chronique avec une moyenne de 8,1 m³/s,
- La période la plus abondante est la décennie 1979-1988 avec une moyenne dépassant légèrement 10 m³/s.

iv VCN10 = valeur la plus basse de l'année du débit moyen calculé sur 10 jours consécutif



<sup>&</sup>lt;sup>1</sup> Module interannuel = moyenne de toutes les valeurs de débits journaliers disponibles dans la série chronologique

ii Mode ou médiane = valeur telle que 50% des valeurs sont supérieures et 50% sont inférieures

iii QMNA = débit moyen du mois le plus sec de l'année (le mois peut être différent selon les années)

# Hydrologie reconstituée à la prise d'eau : variations interannuelles Site : Moulin de La Borie

AVA.

Site: Vienne à Moulin de La Borie (surface BV = 444 km2)
Station HYDRO choisie pour la reconstitution: Reconstitution complexe (voir rapport)
Formule appliquée: Reconstitution complexe (voir rapport)

Logiciel NewPCH v2.1 \(\beta^2\)dev\(\theta\)

Calcul sur 39 ans
(période 1969 à 2007)

1971 1973 1974 1975 1976 1977 1978 1970 Débits reconstitués moyens : Vienne à la prise d'eau 29,0 15,3 16,0 12,2 6,2 6,2 11,4 10,3 16,3 11,1 11,1 12,6 13,2 13,2 10,0 17,77 18,8 18,8 18,8 6,0 6,7 6,7 22,2 25,4 6,2 6,2 23,1 13,1 12,1 3,3 janvier 14,6 13,1 ď 11,5 12,4 16,7 10,2 10,7 5,5 3,5 21,3 9,9 3,4 8,5 9,4 févrie 15,4 11,8 7,3 9,6 9,6 9,0 12,6 8,8 10,7 6,7 3,4 3,4 mars 12,5 0,4 12,4 11,9 19,4 11,7 avril 11,8 6,9 7,9 9,5 18,9 6,6 12,2 11,6 3,3 11,9 10,1 14,7 5,9 16,1 3,0 8,3 7,2 8,8 8,1 9,5 7,8 15,1 7,0 8,1 7,1 8,0 mai 9,2 5,5 7,6 6,5 2,5 7,4 11,7 6,3 3,7 4,3 6,1 12,1 15,3 4,6 7,7 6,2 juin 5,3 6,4 6,7 3,1 2,9 3,5 3,0 2, 1, 2, 2, 2, 8, 2, 2, 2, 4, 8, 1, 8 iuillet 4,3 1,8 1,7 1,7 2,9 2,5 2,5 3,5 1,0 1,0 1,0 5,7 ć, 1,5 3,0 4,5 4, août 3,0 septembre 3,6 1,4 4,4 1,9 13,7 octobre 6,1 4,8 6,1 10,4 6,4 11,2 4,6 28,2 4,4 8,9 1,9 6,0 6,0 2,7 9,7 9,8 7,7 2,2 9,4 8,1 novembre 9,2 9,8 7,6 9,9 31,4 12,4 9,5 3,2 12,6 9,9 2,9 7,3 6,2 22,6 10,2 17,3 9,6 18,0 13,1 5,8 décembre 13,4 13,7 8,8 9,0 9,6 6,7 8,9 10,0 6,01 5,4 6,8 6,7 13,7 9,8 8,5 6,2 9,2 Année (m<sup>3</sup>/s) 365 365 365 366 365 365 365 365 365 366 366 365 365 366 365 365 365 nb total valeurs 363 5,2 4,3 8,4 2,0 6,0 7,6 6,4 8,9 3,6 6,6 6,6 7,7 7,7 7,3 8,9 4, 4, 8, 7, 8 moy été (avr-oct) 6,4 5,6 9,01 18,4 16,4 16,8 20,4 16,2 8,01 13,8 8,1 11,3 11,5 22,9 9,9 9,4 1,71 7,4 8,7 13,7 moy hiver (nov-mars) 13,1 22,5 19,9 2,02 20,1 32,1 12,1 15,3 23,4 19,3 13,9 Q spécif. Ann. (l/s/km2) 20.6 18,1 15,1 15,5 17,1 19,5 33,6 33,6 61,1 48,8 61,1 Débit max annuel 76,1 33,1 35,1 25 Débits moyens : Vienne (m3/s)20 10 Moyenne hiver Moyenne annuelle 5 Movenne été Moyenne 10 ans 1970 11971 11972 11973 11973 11976 11976 11978 11978 11978 11978 11988 11988 11988 11988 11988 11988 11988 11989 11999 11999 11999 11999 11999 11999 11999 11999 11999



## Tendances sur 80 années d'enregistrement

La station du Palais-sur-Vienne, située en aval du confluent de la Maulde, enregistre les débits de la Vienne depuis 1927. Cette longue période d'enregistrements permet d'observer les variations de la ressource hydrologique avec un recul important.

Le graphique suivant montre la moyenne enregistrée sur toute la période (trait gris) et l'évolution d'une moyenne glissante calculée sur 9 années consécutives (trait rouge).

#### On observe que:

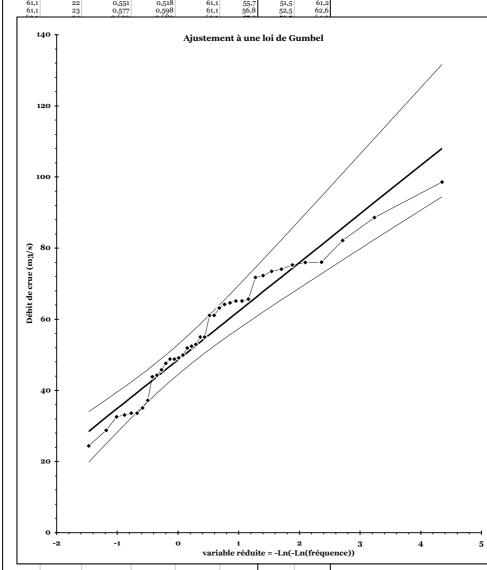
- la dernière décade présente des débits proches de la moyenne sur 80 ans,
- la période de référence de reconstitution de la chronique à La Borie (depuis 1969) montre une hydrologie plutôt supérieure à la moyenne sur 80 ans,
- La période centrée sur les années 1940-1950 présente une ressource de 1/3 inférieure à la moyenne; extrapolée à la ressource de La Borie, il est probable que cette décennie se serait traduite par une moyenne proche de 5,5 m³/s.

Il faut donc garder à l'esprit que la moyenne calculée sur les 39 années de notre chronique de référence doit être considérée avec prudence : rien ne permet de penser que les dix années à venir ne seront pas largement en dessous.



#### Débits de crue

Nous avons calculé les débits de crue, en valeurs moyennes journalières, à partir de notre chronique de référence et par régression à une loi de Gumbel (page suivante) : les crues décennale et vingtennale s'élèvent respectivement à 80 et 90 m³/s. La longueur de la chronique étant limité à 39 ans, nous ne sommes pas en mesure de calculer fidèlement les crues cinquantennales et centennales.


La crue la plus importante enregistrée à la station d'Eymoutiers est celle du 6 juillet 2001. Le débit de pointe instantané a été évaluée à 150 m³/s pour une moyenne journalière de 72 m³/s.

# Hydrologie reconstituée à la prise d'eau : débits de crue Site : Moulin de La Borie Site : Vienne à Moulin de La Borie (surface BV = 444 km2) Période prise en compte pour l'analyse hydrologique : 1969 à 2007 (39 années) Formule appliquée : Reconstitution complexe (voir rapport) Logiciel NewPCH v2.1 \(\beta\)1dev\(\pa\)



# Calcul de l'ajustement à une loi de régression de Gumbel

| Valeurs de départ   Calassées   Classt   Eréquence   Calasie   Calasées   C   |         |           |         |          |           |          |          | Inter     | valle de co | onfiance |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|----------|-----------|----------|----------|-----------|-------------|----------|
| 1969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Valeurs | de départ | Valeurs | Ordre de | Fréquence | Variable | Valeur   | Valeur l  | argeur      | 90%      |
| 1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |           |         |          |           |          |          |           |             |          |
| 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 49,2      | 24,4    |          |           |          | 24,4     |           |             |          |
| 1972   32.6   33.1   4   0.090   -0.880   33.1   36.6   30.3   41.0   1973   55.0   33.6   5   0.115   -0.770   33.6   38.1   32.2   42.4   1974   65.2   33.6   6   0.141   -0.672   33.6   39.4   33.9   43.6   1975   51.9   35.1   7   0.167   -0.583   35.1   40.6   35.4   44.7   1976   63.1   37.2   8   0.192   -0.500   37.2   41.8   36.7   45.8   1977   64.7   43.8   9   0.218   -0.421   43.8   42.8   38.0   46.8   1978   73.5   44.3   10   0.244   -0.345   44.3   43.9   39.2   47.9   1979   45.8   45.8   11   0.269   -0.272   45.8   44.9   40.4   49.0   1980   44.3   47.6   12   0.295   -0.200   47.6   45.9   41.5   50.0   1981   74.1   48.8   13   0.321   -0.129   48.8   45.8   42.6   51.0   1982   76.1   48.8   14   0.346   -0.059   48.8   47.8   43.6   52.0   1983   33.1   49.2   15   0.372   0.011   49.2   48.7   44.6   53.1   1984   55.0   49.9   16   0.397   0.080   49.9   49.7   45.6   54.1   1985   37.2   51.9   17   0.423   0.151   51.9   50.7   46.6   55.2   1986   53.0   52.4   18   0.449   0.221   52.4   51.6   47.6   56.4   1987   33.6   53.0   52.4   18   0.449   0.221   52.4   51.6   47.6   56.4   1989   47.6   55.0   20   0.500   0.367   55.0   53.6   49.5   59.9   1990   72.3   50.1   22   0.551   0.518   51.1   55.0   54.6   50.5   59.9   1991   33.6   61.1   22   0.557   0.598   61.1   55.7   54.5   61.2   1992   61.1   22   0.557   0.598   61.1   55.8   52.5   61.2   1903   35.1   20004   88.2   2000   28.8   2000   28.8   2000   28.8   2000   28.8   2000   28.8   2000   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48.8   48. |         | 65,2      |         |          |           |          |          | 32,4      |             |          |
| 1974   65,2   33,6   6   0,141   -0,672   33,6   39,4   33,9   43,6   1975   51,9   35,1   7   0,167   -0,583   35,1   40,6   35,4   44,7   1976   63,1   37,2   8   0,192   -0,500   37,2   41,8   36,7   45,8   43,8   9   0,218   -0,421   43,8   42,8   38,0   46,9   1978   73,5   44,3   10   0,244   -0,345   44,3   43,9   39,2   47,9   1980   44,3   47,6   12   0,295   -0,272   45,8   44,9   40,4   49,0   1981   74,1   48,8   13   0,321   -0,129   48,8   47,8   43,6   52,0   1982   76,1   48,8   13   0,321   -0,129   48,8   47,8   43,6   52,0   1983   33,1   49,2   15   0,372   0,011   49,2   48,7   44,6   53,1   1984   55,0   49,9   16   0,397   0,080   49,9   49,7   45,6   54,1   1985   37,2   51,9   17   0,423   0,151   51,9   50,7   46,6   55,2   1986   53,0   52,4   18   0,449   0,221   52,4   51,6   47,6   56,4   1987   33,6   53,0   19   0,474   0,293   53,0   52,6   48,6   57,5   1998   47,6   55,0   20   0,500   0,367   55,0   53,6   49,5   58,7   1999   47,6   56,7   1999   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,0   49,9   49,9   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0  |         | 43,8      |         | 3        |           |          |          | 34,8      |             |          |
| 1974   65,2   33,6   6   0,141   -0,672   33,6   39,4   33,9   43,6   1975   51,9   35,1   7   0,167   -0,583   35,1   40,6   35,4   44,7   1976   63,1   37,2   8   0,192   -0,500   37,2   41,8   36,7   45,8   43,8   9   0,218   -0,421   43,8   42,8   38,0   46,9   1978   73,5   44,3   10   0,244   -0,345   44,3   43,9   39,2   47,9   1980   44,3   47,6   12   0,295   -0,272   45,8   44,9   40,4   49,0   1981   74,1   48,8   13   0,321   -0,129   48,8   47,8   43,6   52,0   1982   76,1   48,8   13   0,321   -0,129   48,8   47,8   43,6   52,0   1983   33,1   49,2   15   0,372   0,011   49,2   48,7   44,6   53,1   1984   55,0   49,9   16   0,397   0,080   49,9   49,7   45,6   54,1   1985   37,2   51,9   17   0,423   0,151   51,9   50,7   46,6   55,2   1986   53,0   52,4   18   0,449   0,221   52,4   51,6   47,6   56,4   1987   33,6   53,0   19   0,474   0,293   53,0   52,6   48,6   57,5   1998   47,6   55,0   20   0,500   0,367   55,0   53,6   49,5   58,7   1999   47,6   56,7   1999   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,5   58,7   1999   49,9   49,9   49,9   49,9   49,0   49,9   49,9   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0   49,0  |         | 32,6      | 33,1    | 4        |           |          |          | 36,6      |             |          |
| 1975   51.9   35.1   7   0.167   -0.583   35.1   40.6   35.4   44.7   1976   69.1   37.2   8   0.192   -0.500   37.2   41.8   36.7   45.8   1977   64.7   43.8   9   0.218   -0.421   43.8   42.8   38.0   46.9   1978   73.5   44.3   10   0.244   -0.345   44.3   43.9   39.2   47.9   1979   45.8   45.8   11   0.269   -0.272   45.8   44.9   40.4   49.0   1980   44.3   47.6   12   0.295   -0.200   47.6   45.9   41.5   50.0   1981   74.1   48.8   13   0.321   -0.129   48.8   46.8   42.6   51.0   1982   76.1   48.8   14   0.346   -0.059   48.8   47.8   43.6   52.0   1983   33.1   49.2   15   0.372   0.011   49.2   45.7   44.6   53.1   1984   55.0   49.9   16   0.397   0.080   49.9   49.7   45.6   54.1   1985   37.2   51.9   17   0.423   0.151   51.9   50.7   45.6   54.1   1987   33.6   53.0   19   0.474   0.221   52.4   51.6   47.6   55.4   1988   77.8   55.0   20   0.500   0.367   55.0   53.6   49.5   58.7   1999   47.6   55.0   20   0.500   0.367   55.0   53.6   49.5   58.7   1999   72.3   61.1   22   0.551   0.518   61.1   55.7   51.5   61.2   1999   33.6   61.1   22   0.557   0.598   61.1   55.7   51.5   61.2   1999   33.6   61.1   23   0.577   0.598   61.1   55.7   51.5   61.2   1999   35.1   2000   48.8   2.2   2000   28.8   2000   28.8   2000   28.8   2000   28.8   2000   28.8   2000   48.8   48.8   44.7   44.7   2000   48.8   2.2   2005   28.8   48.8   48.8   48.8   48.6   48.7   2000   48.8   48.8   47.8   48.8   48.7   48.7   48.7   48.7   2000   48.8   48.8   47.8   47.6   48.7   48.7   48.7   48.7   48.7   2000   48.8   48.8   47.8   47.6   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   48.7   |         | 55,0      | 33,6    | 5        |           |          |          | 38,1      |             |          |
| 1977   64,7   43,8   9   0,218   -0,421   43,8   42,8   38,0   46,9     1978   73,5   44,3   10   0,244   -0,345   44,3   43,9   39,2   47,9     1980   44,3   47,6   12   0,295   -0,200   47,6   45,9   41,5   50,0     1981   74,1   48,8   13   0,321   -0,129   48,8   46,8   42,6   51,0     1982   76,1   48,8   14   0,346   -0,059   48,8   47,8   43,6   52,0     1983   33,1   49,2   15   0,372   0,011   49,2   48,7   44,6   53,1     1984   55,0   49,9   16   0,397   0,080   49,9   49,7   45,6   54,1     1985   37,2   51,9   17   0,423   0,151   51,9   50,7   45,6   55,2     1986   53,0   52,4   18   0,449   0,221   52,4   51,6   47,6   55,4     1987   33,6   53,0   19   0,474   0,293   53,0   52,6   48,6   57,5     1988   71,8   55,0   20   0,500   0,367   55,0   53,6   49,5   58,7     1990   72,3   61,1   22   0,551   0,518   61,1   55,7   51,5   61,2     1991   33,6   61,1   22   0,577   0,598   61,1   55,7   51,5   61,2     1993   64,2   1994   49,9   49,9     1997   24,4   1998   61,1   22   0,577   0,598   61,1   55,7   51,5   61,2     1998   61,1   23   0,577   0,598   61,1   55,7   51,5   61,2     1999   33,4   33,4   34,9   47,6   48,8   49,8   49,9     140   48,8   40,8   40,9   40,9     140   48,8   40,8   40,9   40,9   40,9      140   48,8   47,8   47,8   43,6   50,0      140   48,8   47,8   47,6   51,0      140   48,8   47,8   47,6   47,6   53,1      140   48,8   47,8   47,6   48,8      140   48,8   47,8   47,6   48,8      140   48,8   47,8   47,6   48,8      140   48,8   47,8   47,6   48,8      140   48,8   47,8   47,6   48,8      140   48,8   47,8   47,6   48,8      140   48,8   47,8   47,6   48,6      140   48,8   47,8   47,6   48,6      140   48,8   47,8   47,6   47,6      140   48,8   47,8   47,6      140   48,8   47,8   47,6      140   48,8   47,8   47,6      140   48,8   47,8   47,6      140   48,8   47,8   47,6      140   48,8   47,8      140   48,8   47,8      140   48,8   47,8      140   48,8   47,8      140   48,8   47,8      140   48,8   47,8      140   48,8   47,8      140   48,8   47,   |         |           |         | 6        |           |          |          | 39,4      |             |          |
| 1977   64,7   43,8   9   0,218   -0,421   43,8   42,8   38,0   46,9     1978   73.5   44,3   10   0,244   -0,345   44,3   43,9   39,2   47,9     1979   45,8   45,8   11   0,269   -0,272   45,8   44,9   40,4   49,0     1980   44,3   47,6   12   0,295   -0,200   47,6   45,9   41,5   50,0     1981   74,1   48,8   13   0,321   -0,129   48,8   46,8   42,6   51,0     1982   76,1   48,8   14   0,346   -0,059   48,8   47,8   43,6   52,0     1983   33,1   49,2   15   0,372   0,011   49,2   48,7   44,6   53,1     1984   55,0   49,9   16   0,397   0,080   49,9   49,7   45,6   54,1     1985   37,2   51,9   17   0,423   0,151   51,9   50,7   45,6   54,1     1987   33,6   53,0   19   0,474   0,221   52,4   51,6   47,6   55,4     1988   71,8   55,0   20   0,500   0,367   55,0   53,6   49,5   58,7     1999   47,6   55,0   21   0,526   0,441   55,0   54,6   50,5   59,9     1990   72,3   61,1   22   0,551   0,518   61,1   55,7   51,5   61,2     1991   33,6   61,1   22   0,577   0,598   61,1   55,7   51,5   61,2     1993   64,2   1994   49,9   49,9     1997   24,4   41,5   24,5   24,5     1998   61,1   22   0,577   0,598   61,1   55,7   51,5   61,2     1999   35,4   2000   48,8   2000   48,8   2000   28,8     2000   28,8   2000   28,8   2000   28,8     2000   28,8   2000   48,8   2000   48,8   42,8   44,4   43,0   39,2   47,9     120   2000   28,8   2000   28,8   2000   48,8   40,8   44,9   44,0   40,0   44,8   44,6   53,1     2000   28,8   2000   48,8   47,8   44,6   53,1     2000   28,8   2000   28,8   2000   28,8   2000   48,8   47,8   43,6   52,0     2000   28,8   2000   48,8   47,8   44,6   53,0     2000   28,8   2000   48,8   47,8   43,6   52,0     2000   28,8   2000   48,8   47,8   43,6   52,0     2000   28,8   2000   48,8   47,8   44,6   53,0     2000   28,8   2000   48,8   47,8   43,6   52,0     2000   28,8   2000   48,8   47,8   43,6   52,0     2000   28,8   2000   48,8   47,8   43,6   52,0     2000   2000   20,5   40,8   40,8     2000   2000   20,5   40,8     2000   2000   20,5   40,8     2000   2000   20,5   40,8      |         | 51,9      | 35,1    | 7        |           |          | 35,1     | 40,6      | 35,4        | 44,7     |
| 1978   73.5   44.3   10   0.244   -0.345   44.3   43.9   39.2   47.9   1979   45.8   45.8   11   0.269   -0.272   45.8   44.9   40.4   49.0   1980   44.3   47.6   12   0.295   -0.200   47.6   45.9   41.5   50.0   1981   74.1   48.8   13   0.321   -0.129   48.8   46.8   42.6   51.0   1982   76.1   48.8   14   0.346   -0.059   48.8   47.8   43.6   52.0   1983   33.1   49.2   15   0.372   0.011   49.2   48.7   44.6   53.1   1984   55.0   49.9   16   0.397   0.080   49.9   49.7   45.6   53.1   1985   37.2   51.9   17   0.423   0.151   51.9   50.7   46.6   55.2   1986   53.0   52.4   18   0.449   0.221   52.4   51.6   47.6   55.4   1987   33.6   53.0   19   0.474   0.293   53.0   52.6   48.6   57.5   1988   47.6   55.0   20   0.500   0.367   55.0   53.6   49.5   58.7   1989   47.6   55.0   21   0.526   0.441   55.0   54.6   50.5   59.9   1997   72.3   61.1   22   0.551   0.518   61.1   55.7   51.5   61.2   1993   64.2   1994   98.6   61.1   1993   64.2   1994   98.6   1995   65.7   1996   49.9   140   7   1997   48.8   44.3   43.9   39.2   47.9   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   88.8   44.8   47.8   43.6   50.0   140   7   140   7   140   7   140   7   140   88.8   47.8   43.6   50.2   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140   7   140 |         |           | 37,2    |          |           |          | 37,2     | 41,8      |             | 45,8     |
| 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 64,7      | 43,8    |          |           |          |          |           |             |          |
| 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 73,5      | 44,3    |          |           |          |          | 43,9      |             |          |
| 1981   74.1   48.8   13   0.321   -0.129   48.8   46.8   42.6   51.0     1982   76.1   48.8   14   0.346   -0.059   48.8   47.8   43.6   52.0     1983   33.1   49.2   15   0.372   0.011   49.2   48.7   44.6   53.1     1984   55.0   49.9   16   0.397   0.080   49.9   49.7   45.6   54.1     1985   37.2   51.9   17   0.423   0.151   51.9   50.7   46.6   55.2     1986   53.0   52.4   18   0.449   0.221   52.4   51.6   47.6   56.4     1987   33.6   53.0   19   0.474   0.293   53.0   52.6   48.6   57.5     1988   78.8   55.0   20   0.500   0.367   55.0   53.6   49.5   58.7     1990   72.3   61.1   22   0.526   0.441   55.0   54.6   50.5   59.9     1991   33.6   61.1   22   0.551   0.518   61.1   55.7   51.5   61.2     1993   64.2   1994   98.6   61.1   23   0.577   0.598   61.1   56.8   52.5   62.6     1995   65.7   1996   49.9   49.9     1997   24.4   1998   61.1   23   0.577   0.598   61.1   56.8   52.5   62.6     140   78.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2000   48.8   2   |         | 45,8      | 45,8    |          |           |          |          | 44,9      |             |          |
| 1982 76.1 48.8 14 0.346 -0.059 48.8 47.8 43.6 52.0 1983 33.1 49.2 15 0.372 0.011 49.2 48.7 44.6 53.1 1984 55.0 49.9 16 0.397 0.080 49.9 49.7 45.6 54.1 1985 37.2 31.9 17 0.423 0.151 51.9 50.7 46.6 55.2 1986 53.0 52.4 18 0.449 0.221 52.4 51.6 47.6 56.4 1987 33.6 53.0 19 0.474 0.293 53.0 52.6 48.6 57.5 1988 71.8 55.0 20 0.500 0.367 55.0 53.6 49.5 58.7 1989 47.6 55.0 21 0.526 0.441 55.0 54.6 50.5 59.9 1990 72.3 61.1 22 0.551 0.518 61.1 55.7 51.5 61.2 1991 33.6 61.1 52 0.551 0.518 61.1 56.8 52.5 62.6 11.1 23 0.577 0.598 61.1 56.8 52.5 62.6 11.1 23 0.577 0.598 61.1 56.8 52.5 62.6 11.1 23 0.577 0.598 61.1 56.8 52.5 62.6 11.1 23 0.577 0.598 61.1 56.8 52.5 62.6 11.1 1993 64.2 1994 98.6 11.1 1999 52.4 42.000 48.8 62.002 35.1 2003 75.3 2004 88.8 62.00 48.8 82.2 2006 28.8 2006 48.8 82.2 2006 48.8 82.2 2006 48.8 82.2 2006 48.8 82.2 2006 48.8 82.2 2006 48.8 82.2 2006 48.8 83.8 2006 48.8 82.2 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 83.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8  |         | 44,3      | 47,0    |          |           |          |          | 45,9      |             |          |
| 1984   55,0   49,9   16   0,397   0,080   49,9   49,7   45,6   54,1   1985   37,2   51,9   17   0,423   0,151   51,9   50,7   46,6   55,2   1986   53,0   52,4   18   0,449   0,221   52,4   51,6   47,6   56,4   1987   33,6   53,0   19   0,474   0,293   53,0   52,6   48,6   57,5   1988   71,8   55,0   20   0,500   0,367   55,0   53,6   49,5   58,7   1989   47,6   55,0   21   0,526   0,441   55,0   54,6   50,5   59,9   1990   72,3   61,1   22   0,551   0,518   61,1   55,7   51,5   61,2   1993   64,2   1994   98,6   1995   66,7   1996   49,9   1997   24,4   1998   61,1   1999   52,4   2000   48,8   2000   48,8   2000   48,8   22   2000   28,8   2000   48,8   2000   48,8   48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 74,1      |         |          |           |          |          | 40,8      |             |          |
| 1984   55,0   49,9   16   0,397   0,080   49,9   49,7   45,6   54,1   1985   37,2   51,9   17   0,423   0,151   51,9   50,7   46,6   55,2   1986   53,0   52,4   18   0,449   0,221   52,4   51,6   47,6   56,4   1987   33,6   53,0   19   0,474   0,293   53,0   52,6   48,6   57,5   1988   71,8   55,0   20   0,500   0,367   55,0   53,6   49,5   58,7   1989   47,6   55,0   21   0,526   0,441   55,0   54,6   50,5   59,9   1990   72,3   61,1   22   0,551   0,518   61,1   55,7   51,5   61,2   1993   64,2   1994   98,6   1995   66,7   1996   49,9   1997   24,4   1998   61,1   1999   52,4   2000   48,8   2000   48,8   2000   48,8   22   2000   28,8   2000   48,8   2000   48,8   48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |           |         |          |           |          |          | 47,8      |             |          |
| 1985 37.2 51.0 17 0.423 0.151 51.9 50.7 46.6 55.2 1986 53.0 52.4 18 0.449 0.221 52.4 51.6 47.6 56.4 1987 33.6 53.0 19 0.474 0.293 53.0 52.6 48.6 57.5 1988 74.8 55.0 20 0.500 0.367 55.0 53.6 49.5 58.7 1989 47.6 55.0 21 0.526 0.441 55.0 54.6 50.5 59.9 1990 72.3 61.1 22 0.551 0.518 61.1 55.7 51.5 61.2 1993 64.2 1994 98.6 1995 65.7 1996 49.9 1997 24.4 1998 61.1 1993 64.2 1999 52.4 2000 48.8 2000 88.6 2000 88.6 2000 88.6 2000 88.6 2000 88.8 2000 88.8 2000 88.8 2000 88.8 2000 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |         |          |           |          |          | 40,7      |             |          |
| 1986 53,0 52,4 18 0,449 0,221 52,4 51,6 47,6 56,4 1987 33,6 53,0 19 0,474 0,293 53,0 52,6 48,6 57,5 1988 71,8 55,0 20 0,500 0,367 55,0 53,6 49,5 58,7 1990 72,3 61,1 22 0,551 0,518 61,1 55,7 51,5 61,2 1992 61,1 1993 64,2 1994 98,6 1995 65,7 1996 49,9 1997 24,4 1998 61,1 1999 52,4 2000 48,8 50,0 2002 35,1 2000 88,6 2002 35,1 2000 88,6 2002 35,1 2000 48,8 8,6 2005 28,8 2006 48,8 8 2006 48,8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |           |         |          |           |          |          |           | 45,0        |          |
| 1987   33.6   53.0   19   0.474   0.293   53.0   52.6   48.6   57.5   1989   47.6   55.0   20   0.500   0.367   55.0   53.6   49.5   58.7   1989   47.6   55.0   21   0.526   0.441   55.0   54.6   50.5   59.9   1991   33.6   61.1   22   0.551   0.518   61.1   55.7   51.5   61.2   1992   61.1   1993   64.2   1994   98.6   1995   65.7   1996   49.9   49.9   1997   24.4   1998   61.1   1999   52.4   2000   48.8   2001   88.6   2002   35.1   2003   75.3   2004   82.2   2005   28.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   2006   48.8   40.0   48.0   40.0   48.0   40.0   40.0   40.0   40.0   40.0   40 |         | 52.0      |         | 19       |           |          |          | 50,7      | 40,0        | 55,2     |
| 1988 71,8 55.0 20 0,500 0,367 55.0 53.6 49.5 58.7 1989 47.6 55.0 21 0,526 0,441 55.0 54.6 50.5 59.9 1990 72.3 61,1 22 0,551 0,518 61,1 55.7 51.5 61.2 1993 64,2 1994 98.6 1995 65.7 1996 49.9 1997 24.4 1998 61,1 1999 52.4 2000 48.8 2001 88.6 2001 88.6 2002 35.1 2003 75.3 2004 82.2 2005 28.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 2006 2006 2006 2006 2006 2006 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 33,0      |         |          |           |          |          | 51,0      | 49,6        |          |
| 1989 47,6   55,0   21   0,526   0,441   55,0   54,6   50,5   59,9   1990 72,3   61,1   22   0,551   0,518   61,1   55,7   51,5   61,2   1991 33,6   61,1   23   0,577   0,598   61,1   56,8   52,5   62,6   1993 64,2   1994 98,6   1995 65,7   1996 49,9   49,9   61,1   1999   1997 24,4   1998 61,1   1999   1997 24,4   2000 48,8   6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 33,0      |         |          |           |          |          | 52,0      |             | 5/,5     |
| 1990 72-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 47.6      |         |          |           |          |          | 53,0      |             |          |
| 1991   33,6   61,1   23   0,577   0,598   61,1   56.8   52.5   62,6     1993   64,2   98,6   1995   65,7     1996   49,9   49,9   61,1     1999   52,4     2000   48,8   62002   35,1     2003   75.3     2004   82,2     2005   28,8     2006   48,8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 72.2      |         |          |           |          |          |           |             |          |
| 1992 61,1 1993 64,2 1994 98.6 1995 65.7 1996 49.9 1997 24,4 1998 61,1 1999 52-4 2000 48,8 2001 88,6 2002 35,1 2003 75,3 2004 82,2 2005 28,8 2006 48,8 2006 48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |         |          |           |          |          | 56.8      |             |          |
| 1993 64,2<br>1994 98,6<br>1995 65,7<br>1996 49,9<br>1997 24,4<br>1998 61,1<br>1999 52,4<br>2000 48,8<br>2001 88,6<br>2002 35,1<br>2003 75,3<br>2004 82,2<br>2005 28,8<br>2006 48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 61.1      | 60,1    | -3       | 0,0//     | 0,390    | 60.1     | 50,0      | 32,3        | 61.0     |
| 1994 98.6 1995 65.7 1996 49.9 24.4 1998 61.1 1999 52.4 2000 48.8 2000 35.1 2000 2000 28.8 2000 48.8 2.2 2000 48.8 2.2 2000 48.8 2.2 2006 28.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 |         |           | 1 1     |          |           |          |          |           |             |          |
| 1995 65.7 1996 49.9 1997 24,4 1998 61,1 1999 52.4 2000 48.8 2001 88.6 2002 35.1 2003 75.3 2004 82,2 2005 28.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 48.8 2006 4 |         |           | •       |          |           |          |          |           |             |          |
| 1996 49.9 1997 24.4 1998 61.1 1999 52.4 2000 48.8 2001 35.1 2003 75.3 2004 82.2 2005 28.8 2006 48.8 2006 48.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 65.7      | 14      | ro T     |           |          | Ajusteme | ent à une | loi de Gi   | ımbel    |
| 1997 24,4<br>1998 61,1<br>1999 52,4<br>2000 48,8<br>2001 88,6<br>2002 35,1<br>2003 75,3<br>2004 82,2<br>2005 28,8<br>2006 48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |           | 1 1     |          |           |          | •        |           |             |          |
| 1998 61,1<br>1999 52,4<br>2000 48,8<br>2001 88,6<br>2002 35,1<br>2003 75,3<br>2004 82,2<br>2005 28,8<br>2006 48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           | 1 1     | 1        |           |          |          |           |             |          |
| 1999 52.4<br>2000 48.8<br>2001 88.6<br>2002 35.1<br>2003 75.3<br>2004 82.2<br>2005 28.8<br>2006 48.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |           | 1 1     | 1        |           |          |          |           |             |          |
| 2000 48.8   2001 88.6   2002 35.1   2003 75.3   2004 82.2   2005 28.8   2006 48.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 52,4      | 1 1     |          |           |          |          |           |             |          |
| 2001 88,6<br>2002 35,1<br>2003 75,3<br>2004 82,2<br>2005 28,8<br>2006 48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 48,8      | 1 1     | 1        |           |          |          |           |             |          |
| 2003 75.3<br>2004 82.2 120 -<br>2005 28.8<br>2006 48.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2001    | 88,6      | 1 1     |          |           |          |          |           |             |          |
| 2003 75.3<br>2004 82,2<br>2005 28,8<br>2006 48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2002    | 35,1      | 1 I     | 4        |           |          |          |           |             |          |
| 2004 82,2 120 + 2005 28,8 2006 48,8 2006 48,8 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2003    | 75,3      | 1 I     | 1        |           |          |          |           |             |          |
| 2006 48,8 48,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 82,2      | 12      | 20 +     |           |          |          |           |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           | 1 I     | 1        |           |          |          |           |             |          |
| 2007 76,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |           | 1 I     | 1        |           |          |          |           |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2007    | 76,0      | I I     |          |           |          |          |           |             |          |



 ${\it Taille \'e chantillon pour la r\'egression:}$ 

39 ans => **échantillon correct** 

Résultats : paramètres de la loi Gumbel :

Xo= 48,59 gradex = 13,67 U Gauss= 1,6452

# Exploitation des résultats : débits de crues

| Période | fréq. | Var. red. | Débit crue  | Borne inf   | Borne sup   |
|---------|-------|-----------|-------------|-------------|-------------|
| Retour  | stat  | Gumbel    | m3/s        | m3/s        | m3/s        |
| 2 ans   | 0,5   | 0,367     | 54          | 50          | 59          |
| 5 ans   | 0,8   | 1,500     | 69          | 63          | 79          |
| 10 ans  | 0,9   | 2,250     | 79          | 72          | 92          |
| 20 ans  | 0,95  | 2,970     | 89          | 79          | 106         |
| 50 ans  | 0,98  | 3,902     | non calculé | non calculé | non calculé |
| 100 ans | 0,99  | 4,600     | non calculé | non calculé | non calculé |

















# Potentiel énergétique

# 3.1 Outil de calcul du potentiel de production : NewPCH

NewPCH est un logiciel développé par Hydro-m depuis de nombreuses années. Il est le fruit de 30 années d'expérience dans le domaine de l'évaluation du potentiel de production énergétique des micro-centrales hydroélectriques.

Le calcul du productible d'un site à potentiel hydroélectrique s'appuie sur trois groupes de critères :

- les caractéristiques d'exploitation de l'usine (rendement énergétique, hauteur de chute, débits turbinés, débits réservés, ...);
- la ressource hydrologique à la prise d'eau ;
- les tarifs de l'électricité.

Le logiciel NewPCH utilise l'ensemble de ces informations pour évaluer le potentiel de production et de chiffre d'affaires.

Au sein du logiciel NewPCH, le calcul du productible est réalisé, au pas de temps journalier, sur toute la chronique disponible avec les étapes suivantes :

- calcul des débits turbinés jour par jour (dépendent de le ressource hydrologique du jour, des débits d'équipement, de la hauteur de chute réelle, des turbines et du débit réservé);
- calcul de la production énergétique en kWh jour par jour (dépend des débits turbinés, de la hauteur de chute et du rendement global de l'usine);
- calcul du chiffre d'affaires en euros, jour par jour (dépend de la production en kWh, des tarifs et des éventuelles primes à la régularité de production calculés sur toute la chronique).

Les résultats sont donnés sous forme de fiches synthétiques qui ne présentent que les valeurs moyennes mensuelles de chaque année :

- hydrologie à la prise d'eau,
- · débits turbinés et débits restant dans le secteur court-circuité,
- productible énergétique et chiffre d'affaires.

# 3.2 Notion de « productible » = potentiel de production

Le logiciel NewPCH calcule un potentiel de production théorique, appelé aussi productible, c'est-à-dire la production maximale théorique que l'on pourrait obtenir avec l'outil de production en place et compte tenu de la ressource hydrologique. Il n'intègre pas les pertes de productions liées à un dysfonctionnement de l'outil de production (découplage EDF, mauvais réglages divers, arrêts, dégradations, etc).

Dans la pratique, les productions effectivement réalisées se situent toujours en dessous des simulations, 90 % de l'objectif représentant un résultat d'exploitation très honorable avec du matériel en bon état, une régulation optimisée et un dégrillage efficace.

# 3.3 Hypothèses de simulation du projet

# 3.3.1 Conditions actuelles d'exploitation

# Conditions réglementaires

Les conditions d'exploitation actuelles **définies dans l'arrêté du 14/09/2000** sont les suivantes :

- débit d'équipement = 5,5 m³/s
- niveau normal d'exploitation 278,94 NGF (= niveau minimal)
- cote restitution 276,94 NGF
- chute brute maximale = 2,00 m
- débit réservé = 1,25 m³/s répartis en 0,12 m³/s dans la passe à poissons,
   0,31 m³/s dans l'échancrure de débit d'attrait, 0,82 m³/s en lame déversante sur le barrage de 8 cm sur la partie amont du barrage
- caractéristiques du barrage : longueur 71 m, largeur en crête 0,5 m, cotes
   278,93 (en moyenne) sur 39,3 m et 278,86 (en moyenne) sur 31,1 m
- deux vannes de décharge de largeur 3,8 m et 6,3 m, seuils respectifs à 277,38 et 277,54 NGF
- un canal d'amenée de 130 m de longueur

#### **Conditions réelles**

- Le barrage montre des différences avec cette description. Ces différences nous conduisent à suggérer la réalisation d'un levé actualisé, par un géomètre agréé, et la vérification des débits délivrés dans les diverses sections lorsque le fil d'eau est au niveau légal d'exploitation. La délivrance du débit réservé réglementaire pourra ainsi être mieux contrôlée.
- La cote de restitution a été levée dans des conditions d'eaux moyennes à hautes. Or le niveau aval remonte assez rapidement lorsque le débit de la Vienne augmente. La chute brute de 2 m n'est donc pas le maximum que l'on peut observer. La chute brute maximale (basses eaux) se situe en fait vers 2,5 m.

# 3.3.2 Pertes de charge dans le canal d'amenée

L'exploitant actuel observe une perte de charge dans le canal d'amenée d'environ 10 cm, lorsque la centrale est à son débit maximal.

La section du canal est comprise entre 7 et  $10~\text{m}^2$  selon les endroits (largeur 4 à 5 m et profondeur 1,4 à 2,5 m. Le calcul de pertes de charges théoriques, avec un coefficient de Manning-Strickler de 30, donne une perte de charge de 11 cm pour le débit maximum réglementaire de 5,5 m³/s.

# 3.3.3 Variation de la chute nette avec le débit

De façon générale, la chute nette exploitable varie avec le débit du cours d'eau :

- Le niveau amont croît lorsque le débit du cours d'eau dépasse le débit d'équipement + le débit réservé. Le surplus de débit déverse sur la chaussée entraînant une élévation du plan d'eau amont.
- À la restitution, le lit naturel se remplit lorsque les débits croissent et la cote du fil d'eau augmente.

En général, les chaussées de barrages sont plus longues que la largeur du lit naturel. La combinaison des deux effets se traduit alors par un effacement progressif de la chute : le niveau aval croît plus vite que le niveau amont.

## Cote amont : formule du déversoir sur la chaussée

Le calcul d'une cote d'eau sur un barrage est basé sur la formule du déversoir qui relie l'épaisseur de la lame d'eau déversante (écart entre la cote de crête de la chaussée et la cote de l'eau relevée quelques mètres en amont car la lame d'eau se comprime au franchissement de la chaussée) au débit déversant :

Q = k x  $\mu$  x L x h .  $\sqrt{(2.g.h)}$  ou bien h = (Q / (k. $\mu$ .L. $\sqrt{2g}$ ))<sup>2/3</sup>

- Q est le débit en m³/s
- k est un coefficient correctif
- μ est le coefficient de seuil
- L est la longueur de la chaussée en m
- h est l'épaisseur de la lame déversante en m
- $g = 9.81 \text{ m/s}^2$

Le coefficient k permet d'introduire des corrections à la formule de base. Il est égal à I sauf si certains paramètres viennent perturber l'écoulement sur la chaussée (noyage aval, etc.).

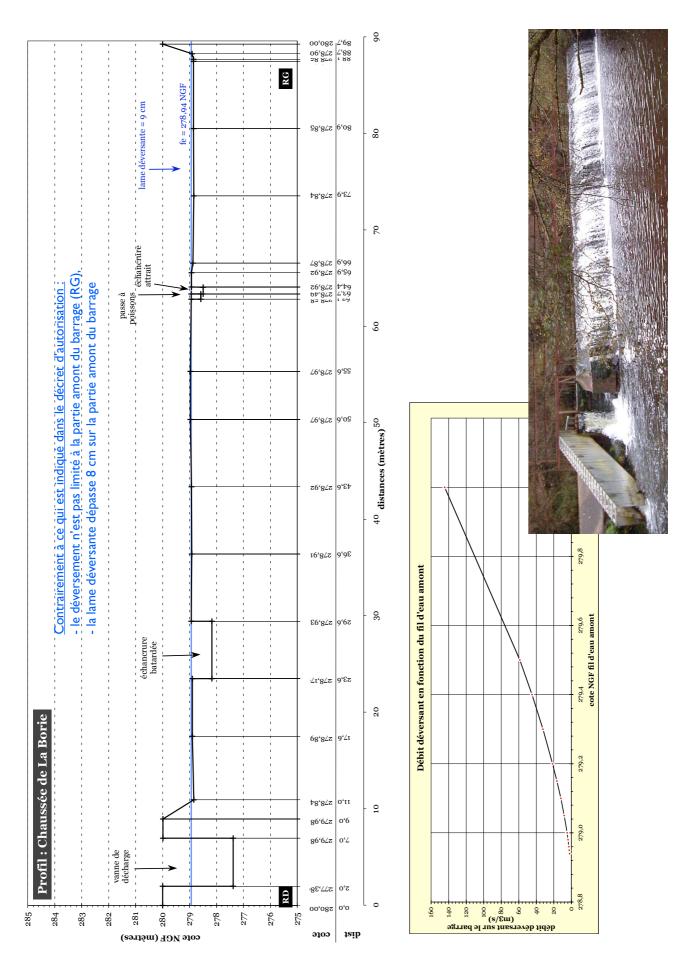
La détermination du coefficient  $\mu$  n'est pas aisée d'autant que sa valeur augmente avec l'épaisseur la lame déversante. Pour les besoins de la reconstitution énergétique nous adoptons un coefficient fixe classique de déversoir à crête épaisse  $\mu$ =0,385.

## Application numérique au barrage de La Borie

Le barrage de La Borie se compose en fait de plusieurs sections distinctes :

- Une échelle à poissons
- Une échancrure de débit d'attrait de la passe à poissons
- Deux sections déversantes
- Un vannage de décharge, à proximité de la prise d'eau, à actionner en période de crue seulement
- Le vannage contrôlant l'entrée de la prise d'eau

Les cotes de radier de ces diverses sections ont été levées par un géomètre le 11/08/1992. Ce levé a été partiellement actualisé en 2006. Le profil suivant en est le résultat.


Ce levé montre de nombreuses différences par rapport à la description faite dans l'arrêté d'autorisation.

### Délivrance du débit réservé

| Calcul au niveau légal : 278,94                   | débit (m3/s) |
|---------------------------------------------------|--------------|
| barrage partie droite (aval, environ 278,93 NGF)  | 0,43         |
| passe à poissons                                  | 0,12         |
| échancrure d'attrait (μ=0,41)                     | 0,39         |
| barrage partie gauche (amont, environ 278,86 NGF) | 1,08         |
| Sous total barrage amont + aval                   | 1,51         |
| TOTAL                                             | 2.02         |

Lorsque le plan d'eau est à son niveau légal (278,94 NGF), le débit délivré sur le barrage et les ouvrages de franchissement est supérieur au débit réservé : 2 m³/s délivré au lieu de 1,25 m³/s. L'excédent est essentiellement délivré par le déversement sur la chaussée elle même : 1,5 m³/s au lieu de 0,82 m³/s.





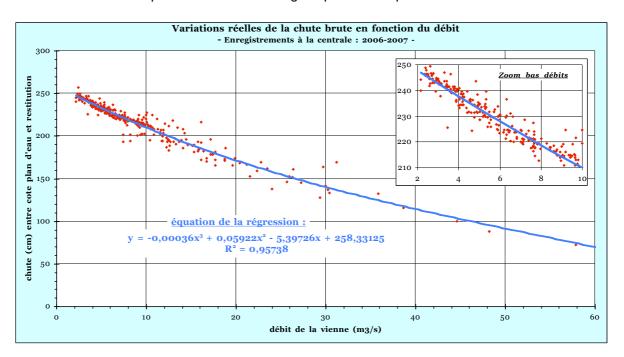
Cet écart théorique constaté avec le débit réservé justifie une reconsidération de la façon dont il doit être réparti dans les diverses sections. Un arasement précis du barrage apparaît nécessaire. Une solution technique simple consisterait en un arasement du barrage à une cote légèrement supérieure à la cote légale du plan d'eau (+1cm) et un élargissement de l'échancrure de débit d'attrait.

Notons que le débit réservé de 1,25 m³/s peut être actuellement délivré avec une cote du plan d'eau amont inférieure de 2 cm à sa valeur légale (278,92 NGF).

### Cote aval: "Hauteur normale" - formule de Strickler

Par définition, la "hauteur normale" est un terme d'hydraulique qui désigne la hauteur d'eau théorique qui s'établit, pour un débit donné, dans une section qui ne subit d'influence ni de l'aval, ni de l'amont. Cette hauteur d'eau ne dépend que des caractéristiques géométriques de la section, de la rugosité (frottements) et de la pente du lit.

Elle se calcule par l'application de la formule de "Manning-Strickler" :


$$Q = K \times S \times (S/P)^{2/3} \times \sqrt{i}$$

- Q est le débit du cours d'eau en m³/s
- K est le coefficient de Strickler
- S est la section mouillée sur le profil
- P est le périmètre mouillé du profil (longueur de contact entre le lit et l'eau)
- i est la pente "moyenne" du lit.

## Résultat : variation de la chute avec le débit

Depuis avril 2006, l'actuel propriétaire a implanté un capteur de niveau qui indique le fil d'eau à la restitution de la centrale, complétant les indication données par le capteur de niveau du plan d'eau amont préexistant.

Nous avons rapproché ces enregistrements, effectués au pas de temps journalier, des chroniques de débits journaliers reconstitués concernant la même période. Le graphe suivant montre le nuage de points correspondant.



La chute brute s'échelonne entre 0,5 et 2,5 m selon les conditions hydrologiques.

Nous pouvons caler une équation de régression de type polynôme d'ordre 3. Cette fonction expérimentale associée à la configuration actuelle (configurations géométriques du barrage et de la restitution), nous permettra, dans le modèle de simulation du potentiel de production, de déterminer la chute brute (pertes de charges non comprises) en fonction du débit de la Vienne.

Chute Brute (cm) = -0.00036.  $Q_{Vienne}^3 + 0.0592$ .  $Q_{Vienne}^2 - 5.397$ .  $Q_{Vienne} + 258.3$ 

La chute nette s'obtient en amputant la chute brute de 2 à 12 cm de pertes de charges (transit dans le canal d'amenée), selon que le débit turbiné est, respectivement, à son minimum ou à son maximum (=> Perte (cm)  $\approx$  2,0 x  $Q_{turbiné}$ ).

# 3.3.4 Calage du modèle de calcul du potentiel de production

Il est nécessaire de confronter les résultats du modèle de simulation de la situation actuelle théorique avec la production réellement enregistrée à la centrale, transmise par l'exploitant (années 1997 à 2006).

Les tableaux suivants permettent d'effectuer cette comparaison.

| Année             | Production historique (kWh) | Calcul modèle<br>(kWh) |
|-------------------|-----------------------------|------------------------|
| 1990              | 189 858                     | 295 300                |
| 1991              | 195 133                     | 343 200                |
| 1992              | 218 434                     | 425 500                |
| 1993              | 229 098                     | 411 000                |
| 1994              | 156 028                     | 402 500                |
| 1995              | 201 536                     | 338 700                |
| 1996              | 233 000                     | 344 500                |
| 1997              | 281 317                     | 372 100                |
| 1998              | 320 668                     | 421 600                |
| 1999              | 293 114                     | 377 800                |
| 2000              | 288 951                     | 409 400                |
| 2001              | 347 513                     | 417 800                |
| 2002              | 335 543                     | 423 000                |
| 2003              | 261 350                     | 296 200                |
| 2004              | 328 074                     | 340 500                |
| 2005              | 244 294                     | 286 300                |
| 2006              | 312 041                     | 340 800                |
| 2007              | 428 265                     | 431 100                |
| moyenne 1990/2007 | 270 200                     | 371 000                |
| moyenne 2003/2007 | 314 800                     | 339 000                |

## Conditions simulées :

- débit d'équipement = 5,5 m³/s
- débit minimum turbiné = 1,5 m³/s (turbine Leroy Somer)
- rendement global = 60%
- pertes de charges dans le canal ≈ 10 cm
- chute brute réelle : 0,5 à 2,5 m selon le débit de la Vienne

Potentiel de production calculé par le modèle

| occircio: ac pi oc | roduction carcule par le modele |         |         |         |         |         |         |         |         |         |         |         |         |
|--------------------|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Année              | Moy 96/07                       | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    | 2007    |
| janvier            | 42 900                          | 37 742  | 43 102  | 36 310  | 46 131  | 45 405  | 45 224  | 44 080  | 41 997  | 34 832  | 47 951  | 44 637  | 47 292  |
| février            | 39 600                          | 42 445  | 37 147  | 41 865  | 36 513  | 40 195  | 43 642  | 39 561  | 37 963  | 44 732  | 43 699  | 30 585  | 36 575  |
| mars               | 43 600                          | 48 455  | 42 289  | 42 041  | 43 040  | 45 469  | 39 420  | 47 698  | 46 756  | 45 079  | 48 617  | 37 290  | 36 500  |
| avril              | 39 000                          | 40 520  | 15 360  | 37 241  | 45 582  | 43 088  | 38 755  | 36 706  | 32 631  | 46 046  | 44 840  | 44 021  | 43 523  |
| mai                | 41 900                          | 45 941  | 36 812  | 45 815  | 46 386  | 47 161  | 42 850  | 40 083  | 29 357  | 46 002  | 44 157  | 39 186  | 39 169  |
| juin               | 29 800                          | 38 263  | 36 111  | 44 247  | 37 076  | 38 702  | 34 394  | 40 849  | 8 189   | 10 849  | 11 061  | 12 815  | 45 237  |
| juillet            | 20 700                          | 13 810  | 40 829  | 13 716  | 18 725  | 32 522  | 35 150  | 30 224  | 2 034   | 4 173   | 5 875   | 5 117   | 46 614  |
| août               | 14 400                          | 0       | 21 207  | 627     | 10 970  | 11 152  | 33 598  | 24 922  | 670     | 30 099  | 0       | 3 126   | 36 479  |
| septembre          | 10 100                          | 0       | 5 047   | 19 163  | 11 125  | 3 071   | 19 429  | 6 059   | 838     | 12 961  | 588     | 14 348  | 28 632  |
| octobre            | 19 200                          | 3 578   | 9 939   | 46 657  | 19 437  | 25 017  | 22 466  | 25 321  | 14 101  | 15 363  | 0       | 32 754  | 15 234  |
| novembre           | 28 400                          | 31 935  | 39 336  | 45 470  | 26 218  | 32 320  | 29 366  | 43 116  | 33 070  | 13 040  | 5 768   | 29 616  | 11 476  |
| décembre           | 42 200                          | 41 820  | 44 879  | 48 497  | 36 606  | 45 284  | 33 484  | 44 374  | 48 593  | 37 337  | 33 694  | 47 300  | 44 366  |
| Total Année        | 371 800                         | 344 500 | 372 100 | 421 600 | 377 800 | 409 400 | 417 800 | 423 000 | 296 200 | 340 500 | 286 300 | 340 800 | 431 100 |

Données historiques de production effective

| Année       | Moy 96/07 | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    | 2007    |
|-------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| janvier     | 39 400    | 37 349  | 34 790  | 36 458  | 37 578  | 21 756  | 49 270  | 34 895  | 50 788  | 38 309  | 48 494  | 35 325  | 48 280  |
| février     | 41 000    | 45 602  | 34 476  | 36 775  | 40 620  | 41 045  | 48 610  | 32 056  | 42 688  | 44 626  | 46 179  | 30 368  | 48 881  |
| mars        | 41 300    | 43 122  | 32 297  | 32 426  | 43 796  | 46 113  | 39 293  | 46 200  | 35 991  | 40 666  | 38 973  | 45 395  | 51 583  |
| avril       | 36 800    | 19 183  | 13 271  | 36 469  | 43 101  | 40 308  | 45 215  | 29 530  | 25 995  | 47 006  | 47 094  | 50 677  | 43 367  |
| mai         | 36 500    | 29 802  | 27 609  | 40 067  | 40 870  | 43 080  | 43 535  | 33 189  | 24 586  | 44 789  | 40 092  | 35 424  | 35 447  |
| juin        | 21 000    | 9 555   | 18 985  | 25 254  | 38 890  | 20 843  | 26 957  | 32 410  | 5 831   | 17 223  | 4 629   | 7 450   | 43 661  |
| juillet     | 7 000     | 0       | 0       | 0       | 0       | 0       | 33 433  | 0       | 0       | 7 184   | 0       | 0       | 42 916  |
| août        | 10 200    | 0       | 40 102  | 0       | 0       | 0       | 17 776  | 19 571  | 0       | 14 882  | 0       | 0       | 29 710  |
| septembre   | 4 900     | 0       | 0       | 0       | 0       | 8 127   | 0       | 0       | 0       | 13 489  | 0       | 15 494  | 22 134  |
| octobre     | 11 500    | 0       | 20 166  | 37 817  | 0       | 0       | 0       | 20 446  | 9 054   | 14 855  | 0       | 23 687  | 12 403  |
| novembre    | 20 100    | 13 541  | 23 660  | 34 024  | 21 143  | 23 992  | 19 494  | 36 910  | 26 982  | 13 780  | 0       | 21 894  | 6 354   |
| décembre    | 36 400    | 34 846  | 35 961  | 41 378  | 27 116  | 43 687  | 23 930  | 50 336  | 39 435  | 31 265  | 18 833  | 46 327  | 43 529  |
| Total Année | 306 200   | 233 000 | 281 317 | 320 668 | 293 114 | 288 951 | 347 513 | 335 543 | 261 350 | 328 074 | 244 294 | 312 041 | 428 265 |

La moyenne du potentiel de production calculé sur la chronique 1990-2007 (370 000 kW) est supérieure d'environ 30% de la moyenne de la production réalisée (270 000 kW). Le même calcul effectué sur les dernières années, 2003 à 2007, c'està-dire depuis l'acquisition par le nouveau propriétaire, fait apparaître un écart beaucoup plus limité, de l'ordre de 8%.

Par ailleurs, le modèle restitue bien les variations mois par mois.

Nous validons ainsi le calage du modèle avec les hypothèses de rendement et de pertes de charges associées.

Il est normal que le modèle calcule un potentiel de production supérieur à la production effectivement réalisée car il ne tient pas compte des pertes liées aux aléas de gestion (pannes, pertes de charges liées aux difficultés de défeuillage) et aux variations instantanées de débit provoquées par les microcentrales de l'amont, en particulier la centrale EDF de Bussy.

Notons enfin que la production potentielle moyenne calculée par le modèle sur la chronique hydrologique de référence, 1969-2007, atteint une moyenne de 373 000 kWh par an, ce qui équivaut à production potentielle de la période 1990-2007 et dépasse celle de la période récente.

## 3.4 Résultats

### **Scénarios**

Les simulations sont les suivantes :

- Débit d'équipement compris entre 5,5 et 9 m³/s
- Maintien d'un débit de démarrage à 1,5 m³/s (maintien d'une turbine de faible capacité)
- Débit réservé réglementaire 1,25 m³/s (suppose un arasement du barrage pour un meilleur contrôle du déversement)
- Rendement global amélioré: 70%
- Pertes de charge dans le canal d'amenée maintenu à 10 cm environ ; ceci suppose un élargissement proportionnel du canal avec la valeur du débit d'équipement
- Tarif: 2007 Nouvelles Centrales (tarif 2007 conditionné à l'importance des investissements de modernisation: minimum de 800€ par kW installé à l'origine)

## Résultats

Les résultats détaillés, année par année, mois par mois, sont reportés en <u>annexe 3</u> (impact sur le secteur court-circuité, débits turbinés, potentiel de production et chiffre d'affaire).

La fiche de la page suivante en donne une synthèse.



# Scénarios de simulation (données et résultats)

Logiciel NewPCH v2.1 β4dev∂

Nom usine ou site: Moulin de La Borie

### • Hydrologie

- Situation de la prise d'eau

Nom du cours d'eau Vienne Surface du BV à la prise d'eau 444 km2

- Période de la série chronologique hydrologique

1ère année de la série hydro 1969 Dernière année de la série hydro 2007

- Station HYDRO de référence utilisée

Nom de la station Peyrelevade
Nom du cours d'eau jaugé Vienne
Code HYDRO de la station Lo010610
Surface BV à la station Hydro 58,5 km2

- Reconstitution de l'hydrologie à la prise d'eau Reconstitution complexe : station de référence et BVi

#### - Résultats de l'analyse hydrologique

module interannuel 9,15 m $_3/s$ , soit 20,6  $_1/s/km_2$ 

 moy été (avr-oct)
 6,39 m3/s , soit

 moy hiver (nov-mars)
 13,07 m3/s , soit

 Débit médian
 6,75 m3/s , soit

#### • Prise en compte de la variation de la chute selon le débit

- Prise en compte ? oui : formule de régression polynomiale de degré 3

- Cote d'eau / chaussée dépendante du débit ?

Si oui : longueur chaussée 68,9 m

- Cote d'eau à la restitution : Largeur moyenne de la section Coefficient de Strickler Pente moyenne du secteur

#### • Scénarios et résultats

|                                                         | Actuel         | S1          | S2          | S <sub>3</sub> | S4          | S <sub>5</sub> | S6          | <b>S</b> 7  | S8          | S9 | S10        |
|---------------------------------------------------------|----------------|-------------|-------------|----------------|-------------|----------------|-------------|-------------|-------------|----|------------|
| Définition des tarifs                                   |                |             |             |                |             |                |             |             |             |    |            |
| Туре                                                    | Ancienne C.    | Nouvelle C. | Nouvelle C. | Nouvelle C.    | Nouvelle C. | Nouvelle C.    | Nouvelle C. | Nouvelle C. | Nouvelle C. |    | Nouvelle C |
| contrat                                                 | T1997          | T2007       | T2007       | T2007          | T2007       | T2007          | T2007       | T2007       | T2007       |    | T200       |
| Année contrat                                           | 2007           | 2007        | 2007        | 2007           | 2007        | 2007           | 2007        | 2007        | 2007        |    | 2007       |
| 1 ou 2 tarifs (hiv/été)                                 | 2              | 2           | 2           | 2              | 2           | 2              | 2           | 2           | 2           |    | 2          |
| Prix hiver                                              | 8,147          | 11,830      | 11,830      | 11,830         | 11,830      | 11,830         | 11,830      | 11,830      | 11,830      |    | 11,83      |
| Prix été                                                | 3,276          | 6,250       | 6,250       | 6,250          | 6,250       | 6,250          | 6,250       | 6,250       | 6,250       |    | 6,25       |
| Majoration investissement                               | <b>3</b> , , : | - , 0       | - , 0 -     | - 7 0          | - 7 0 -     | - , 0          | - 1, 0      | - 7 0 -     | - 7, 0      |    | - 7        |
| Majoration qualité max                                  | 1,684          | 1,68        | 1,68        | 1,68           | 1,68        | 1,68           | 1,68        | 1,68        | 1,68        |    | 1,68       |
| Définition de l'équipement                              |                |             |             |                |             |                |             |             |             |    |            |
| Hauteur de chute brute                                  | 2              | 2           | 2           | 2              | 2           | 2              | 2           | 2           | 2           |    | 2          |
| Hauteur de chute nette Hn                               | 2,3            | 2,3         | 2,3         | 2,3            | 2,3         | 2,3            | 2,3         | 2,3         | 2,3         |    | 2,3        |
| Débit turbiné mini                                      | 1,5            | 1,5         | 1,5         | 1,5            | 1,5         | 1,5            | 1,5         | 1,5         | 1,5         |    | 1,5        |
| Débit turbiné maxi                                      | 5,5            | 5,5         | 6           | 6,5            | 7           | 7,5            | 8           | 8,5         | 9           |    | 6,6        |
| Débit réservé hiver                                     | 1,25           | 1,25        | 1,25        | 1,25           | 1,25        | 1,25           | 1,25        | 1,25        | 1,25        |    | 1,25       |
| Débit réservé été                                       | 1,25           | 1,25        | 1,25        | 1,25           | 1,25        | 1,25           | 1,25        | 1,25        | 1,25        |    | 1,25       |
| Autres débits non turbinables                           |                |             |             |                |             |                |             |             |             |    |            |
| Puissance max installée                                 | 108            | 108         | 118         | 128            | 137         | 147            | 157         | 167         | 177         |    | 129        |
| Part futur/ancien                                       | 100%           | 100%        | 100%        | 100%           | 100%        | 100%           | 100%        | 100%        | 100%        |    | 100%       |
| Rendement                                               | 60%            | 70%         | 70%         | 70%            | 70%         | 70%            | 70%         | 70%         | 70%         |    | 70%        |
| Puissance max fournie                                   | 74             | 87          | 95          | 103            | 111         | 118            | 126         | 134         | 142         |    | 104        |
| • Résultats : débits turbinés et nombi                  | o do iouro     |             |             |                |             |                |             |             |             |    |            |
|                                                         |                |             |             |                |             |                | . 0         |             |             |    |            |
| Débit turbiné moyen annuel                              | 3,7            | 3,7         | 4,0         | 4,2            | 4,4         | 4,6            | 4,8         | 5,0         | 5,1         |    | 4,3        |
| Débit turbiné moyen été                                 | 3,0            | 3,0         | 3,1         | 3,3            | 3,4         | 3,5            | 3,6         | 3,7         | 3,8         |    | 3,3        |
| Débit turbiné moyen hiver                               | 4,8            | 4,8         | 5,2         | 5,5            | 5,9         | 6,2            | 6,5         | 6,7         | 7,0         |    | 5,6        |
| Débits du secteur court-circuité (c                     | lébit réservé  | + débit dé  |             | utres débit    | s non turb  |                | s)          |             |             |    |            |
| Débit secteur cc moyen annuel                           | 5,4            | 5,4         | 5,2         | 5,0            | 4,7         | 4,6            | 4,4         | 4,2         | 4,0         |    | 4,9        |
| Débit secteur cc moyen été                              | 3,4            | 3,4         | 3,3         | 3,1            | 3,0         | 2,9            | 2,8         | 2,7         | 2,6         |    | 3,1        |
| Débit secteur cc moyen hiver                            | 8,2            | 8,2         | 7,9         | 7,5            | 7,2         | 6,9            | 6,6         | 6,3         | 6,1         |    | 7,5        |
| Nombre de jours avec                                    |                |             |             |                |             |                |             |             |             |    |            |
| - Turbines actives                                      | 290            | 290         | 290         | 290            | 290         | 290            | 290         | 290         | 290         |    | 290        |
| - Turbines a plein régime                               | 188            | 188         | 177         | 167            | 157         | 148            | 137         | 129         | 121         |    | 164        |
| - Qtronçon CC ≤ dr                                      | 126            | 126         | 138         | 149            | 159         | 169            | 178         | 186         | 195         |    | 150        |
| • •                                                     |                |             | <u> </u>    |                | 0,          |                | , -         |             |             |    |            |
| <ul> <li>Résultats : productible total en MW</li> </ul> | h              |             |             |                |             |                |             |             |             |    |            |
| Production moyenne annuelle                             | 373            | 436         | 462         | 486            | 509         | 530            | 549         | 567         | 583         |    | 491        |
| Production moyenne été                                  | 181            | 211         | 222         | 232            | 240         | 248            | 255         | 262         | 268         |    | 233        |
| Production moyenne hiver                                | 191            | 223         | 239         | 254            | 268         | 281            | 293         | 304         | 315         |    | 257        |
| • Résultats : chiffre d'affaire en 1000                 | €              |             |             |                |             |                |             |             |             |    |            |
| Productible total en 1000 € (majo                       | rations qual   | ité non coi | nprises, m  | aioration i    | nvestissem  | ent T97 in     | cluse)      |             |             |    |            |
| annuel                                                  | 22             | 40          | 42          | 45             | 47          | 49             | 51          | 52          | 54          |    | 45         |
| été                                                     | 6              | 13          | 14          | 14             | 15          | 16             | 16          | 16          | 17          |    | 15         |
| hiver                                                   | 16             | 26          | 28          | 30             | 32          | 33             | 35          | 36          | 37          |    | 30         |
| Prix moyen du kWh annuel réalise                        |                |             |             | 9.             | J-          | - 55           |             |             | 37          |    | 3.         |
| hors prime                                              | 5,783          | 9,122       | 9,148       | 9,172          | 9,195       | 9,216          | 9,235       | 9,252       | 9,268       |    | 9,177      |
|                                                         |                |             |             |                |             |                |             |             |             |    |            |
| prime (seuls 5 mois d'hiver)                            | 1,651          | 1,647       | 1,627       | 1,571          | 1,539       | 1,504          | 1,483       | 1,456       | 1,444       |    | 1,577      |
| total annuel moyen                                      | 6,470          | 9,969       | 9,993       | 9,994          | 10,007      | 10,015         | 10,028      | 10,036      | 10,049      |    | 10,003     |
| Chiffre d'affaire annuel total HT e                     | n 1000 € (ta   | outes maio  | rations inc | luses)         |             |                |             |             |             |    |            |
| CA annuel total HT en 1000 €                            | 24,8           | 43,4        | 46,1        | 48,6           | 50,9        | 53,0           | 55,0        | 56,9        | 58,6        |    | 49,1       |
|                                                         |                |             |             |                |             |                |             |             |             |    |            |

## **Analyse**

A débit identique (5,5 m³/s), l'écart entre la situation actuelle et le scénario \$1 (+17%) est exclusivement lié aux gains de rendement liés à la modernisation des turbines et des équipements électriques.

Les scénarios S1 à S8 ne diffèrent que par le débit d'équipement, chaque scénario ajoutant 0,5 m³/s au précédent. Chaque pas de 0,5 m³/s apporte une production supplémentaire de 25 MWh (passage de 5,5 à 6,0 m³/s) à 15 MWh (passage de 8,5 à 9 m³/s). Ainsi, le gain marginal décroît progressivement avec l'augmentation du débit d'équipement.

## +20% de puissance

Le scénario S10 correspond exactement à une progression de 20% de la valeur du débit d'équipement . C'est le maximum de ce qui est autorisé dans le cadre d'une augmentation de puissance déclarative (décret n°95-1204 du 6/11/1995 modifié par le décret N°2006-880 du 17/7/2006).

Cette optimisation permet de faire passer le potentiel énergétique moyen annuel de 373 à 491 MWh annuel, soit une progression d'un peu plus de 30%.

Les investissements dans la rénovation permettront de bénéficier du tarif 2007 Nouvelles Centrales. Dans ce cadre, le chiffre d'affaire potentiel annuel passe de 25 000 € actuellement à 49 000 €, avec ce projet, soit presque un doublement (+96%).

## Augmentation supplémentaire

Une augmentation de puissance supplémentaire, imposant la constitution d'un dossier de demande d'autorisation, jusqu'à un débit d'équipement de 9 m³/s (équivalent au module influencé de la Vienne) apporterait 19% de plus, par rapport au scénario précédent :

- 90 MWh par an supplémentaires
- 9 500 € par an supplémentaires

## Impacts sur le secteur court-circuité (Scénario S10)

L'encadré suivant présente une analyse graphique des débits du secteur court-circuité pour un débit dérivé maximum de 6,6 m³/s et un débit réservé de 1,25 m³/s :

- Courbe des débits classés
- Nombre de jours impactés

La courbe des débits classés montre l'écart entre la situation amont et celle du secteur court-circuité. Dans ce dernier, le module est de 4,9 m³/s (pour 9,2 en amont). Le débit moyen turbiné par la centrale est de 4,3 m³/s.

La centrale est à l'arrêt 75 jours par an en moyenne (ressource insuffisante), le secteur court-circuité récupère alors la totalité des eaux de la Vienne. Il est en situation de débit réservé strict (1,25 m³/s exactement) 133 jours par an, la centrale absorbant la totalité de la Vienne sauf le dr (graphe : en bleu).

Enfin, 164 jours par an, la centrale fonctionne à plein régime (au mois 95% du débit nominal) et un débit supérieur au débit réservé passe dans le secteur court-circuité (en orange).

Au total, 215 jours par an (en vert), le débit dans le secteur court-circuité est supérieur à la valeur du débit réservé (soit plus d'un jour sur 2).



# Bilan et recommandations

## Scénario retenu

Dans un premier temps, le scénario que nous recommandons correspond à une **augmentation de débit d'équipement de 20%**, passant à **6,6 m³/s** accompagné d'une modernisation complète de la centrale visant à en augmenter sensiblement le rendement moyen.

Dans ce cadre, il sera indispensable d'envisager une rénovation du barrage (suppression des fuites) et son arasement afin de contrôler efficacement la délivrance du débit réservé de 1,25 m³/s.

Dans un deuxième temps, il serait possible d'envisager une augmentation supplémentaire de puissance pour atteindre un débit proche du module, 9 m³/s. Ce nouvel équipement imposerait un élargissement du canal d'amenée et une reprise des chambres d'eau.

L'incertitude sur l'évolution de la ressource hydrologique dans le contexte du réchauffement climatique nous conduit à ne pas préconiser ce scénario. Rappelons que le module de la Vienne influencée par les équipements EDF de l'amont avoisine 9 m³/s sur la période 1969-2007. Mais la ressource hydrologique de la décennie 1940-1950 approchait 5,5 m³/s de moyenne.

## Production et chiffre d'affaires potentiels (scénario +20%)

La production et le chiffre d'affaires (tarif 2007 Nouvelles Centrales) annuels potentiels moyens atteignent 490 MWh pour 49 000 €.

Les valeurs du CA potentiels sont de 44 500 € en P50 (valeur médiane) et 36 500 € en P90 (valeur décennale).

## Estimatif des dépenses

L'estimatif des investissements pour réaliser le scénario retenu (S10 : 6,6 m³/s d'équipement) figure en <u>annexe 4</u> ; il s'établit à 94 000 €HT.

### Rentabilité

La rentabilité du projet s'exprime comme suit :

$$\varphi = \frac{\text{recette annuelle x 0,75}}{\text{investissement}} \qquad \text{Soit } \varphi = \frac{49\ 000\ x\ 0,75}{94\ 000} = 39\ \%$$

Si l'on se réfère au gain marginal, par rapport au CA actuel de la centrale :

$$\varphi = \frac{\text{recette annuelle supplémentaire} \times 0,75}{\text{investissement}} \qquad \text{Soit } \varphi = \frac{24\ 000 \times 0,75}{94\ 000} = 19\ \%$$

lanvier 2008



# **ANNEXES**





# **Annexe 1**

# Autorisations du Moulin de La Borie

- arrêté du 14/09/2000 (règlement d'eau)
- arrêté du 13/06/2002 (changement d'exploitant)





# **Annexe 2**

Fiches de synthèse des stations hydrométriques de la Vienne







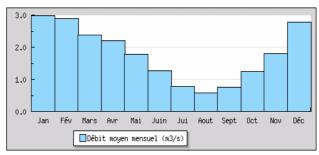


## LA VIENNE à PEYRELEVADE [SERVIERES]

Code station: L0010610 Bassin versant: 58.5 km²

Producteur: DIREN Limousin E-mail: diren@limousin.ecologie.gouv.fr

SYNTHESE: données hydrologiques de synthèse (1957 - 2007) Calculées le 16/06/2007 - Intervalle de confiance : 95 %


### écoulements mensuels (naturels)

#### données calculées sur 51 ans

|                 | janv.   | fév.    | mars    | avr.   | mai     | juin    | juil.   | août    | sept.  | oct.    | nov.   | déc.    | Année |
|-----------------|---------|---------|---------|--------|---------|---------|---------|---------|--------|---------|--------|---------|-------|
| Débits (m3/s)   | 2.970 # | 2.900 # | 2.370 # | 2.210# | 1.770 # | 1.270 # | 0.782 # | 0.568 # | 0.745# | 1.250 # | 1.810# | 2.770 # | 1.780 |
| Qsp (l/s/km2)   | 50.7 #  | 49.6 #  | 40.5 #  | 37.8 # | 30.2 #  | 21.7#   | 13.4 #  | 9.7 #   | 12.7 # | 21.4 #  | 30.9 # | 47.3 #  | 30.4  |
| Lame d'eau (mm) | 135 #   | 124 #   | 108 #   | 98 #   | 80 #    | 56 #    | 35 #    | 25 #    | 33 #   | 57 #    | 80 #   | 126 #   | 962   |

Qsp : débits spécifiques

- Codes de validité : (espace) : valeur bonne
  - (espace) : vaieur porine -! : valeur reconstituée par le gestionnaire et jugée bonne
  - # : valeur estimée (mesurée ou reconstituée) que le gestionnaire juge incertaine



### modules interannuels (loi de Gauss - septembre à août)

#### données calculées sur 51 ans

| module (moyenne)      | fréquence     | quinquennale sèche    | médiane               | quinquennale humide   |
|-----------------------|---------------|-----------------------|-----------------------|-----------------------|
| 1.780 [ 1.670;1.880 ] | débits (m3/s) | 1.400 [ 1.300;1.500 ] | 1.800 [ 1.600;2.100 ] | 2.100 [ 2.000;2.300 ] |

## basses eaux (loi de Galton - janvier à décembre)

#### données calculées sur 51 ans

| fréquence          | VCN3 (m3/s)           | VCN10 (m3/s)          | QMNA (m3/s)           |
|--------------------|-----------------------|-----------------------|-----------------------|
| biennale           | 0.200 [ 0.170;0.230 ] | 0.240 [ 0.210;0.270 ] | 0.370 [ 0.330;0.420 ] |
| quinquennale sèche | 0.120 [ 0.097;0.140 ] | 0.150 [ 0.130;0.180 ] | 0.240 [ 0.210;0.280 ] |

### crues (loi de Gumbel - septembre à août)

#### données calculées sur 49 ans

| fréquence      | QJ (m3/s)             | QIX (m3/s)            |
|----------------|-----------------------|-----------------------|
| biennale       | 11.00 [ 10.00;12.00 ] | 14.00 [ 13.00;15.00 ] |
| quinquennale   | 14.00 [ 13.00;16.00 ] | 19.00 [ 17.00;21.00 ] |
| décennale      | 17.00 [ 16.00;19.00 ] | 22.00 [ 20.00;24.00 ] |
| vicennale      | 19.00 [ 18.00;22.00 ] | 25.00 [ 22.00;28.00 ] |
| cinquantennale | 22.00 [ 20.00;26.00 ] | 28.00 [ 26.00;32.00 ] |
| centennale     | non calculé           | non calculé           |

## maximums connus (par la banque HYDRO)

| hauteur maximale instantanée (cm) | 214     | 4 février 2003 01:46 |
|-----------------------------------|---------|----------------------|
| débit instantané maximal (m3/s)   | 26.60 # | 4 février 2003 01:46 |
| débit journalier maximal (m3/s)   | 35.00   | 4 octobre 1960       |

## débits classés

## données calculées sur 18346 jours

| fréquence    | 0.99  | 0.98  | 0.95  | 0.90  | 0.80  | 0.70  | 0.60  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05  | 0.02  | 0.01  |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| débit (m3/s) | 8.750 | 7.100 | 5.110 | 3.870 | 2.650 | 2.040 | 1.620 | 1.280 | 0.977 | 0.723 | 0.498 | 0.323 | 0.230 | 0.172 | 0.143 |



13-07-2007 http://hydro.eaufrance.fr/ - Page 1/1





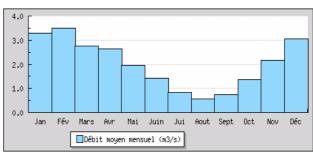


## LA VIENNE à PEYRELEVADE [LA RIGOLE DU DIABLE]

Code station: L0010620 Bassin versant: 71 km²

Producteur : EDF E-mail: DTG-DEMANDE-DONNEES-HYDRO@edf.fr

SYNTHESE: données hydrologiques de synthèse (1969 - 2006) Calculées le 16/06/2007 - Intervalle de confiance : 95 %


### écoulements mensuels (naturels)

#### données calculées sur 38 ans

|   |                | janv.   | fév.    | mars    | avr.    | mai     | juin    | juil.   | août    | sept.  | oct.    | nov.    | déc.    | Année |
|---|----------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|-------|
|   | Débits (m3/s)  | 3.290 # | 3.510 # | 2.760 # | 2.650 # | 1.950 # | 1.430 # | 0.836 # | 0.551 # | 0.743# | 1.370 # | 2.170 # | 3.040 # | 2.020 |
|   | Qsp (l/s/km2)  | 46.3 #  | 49.5 #  | 38.9 #  | 37.4 #  | 27.5 #  | 20.2 #  | 11.8 #  | 7.8 #   | 10.5 # | 19.3 #  | 30.6#   | 42.8 #  | 28.4  |
| L | ame d'eau (mm) | 124#    | 123 #   | 104 #   | 96 #    | 73 #    | 52 #    | 31 #    | 20 #    | 27 #   | 51 #    | 79 #    | 114#    | 900   |

Qsp : débits spécifiques

- Qsp : débits specing Codes de validité : (espace) : valeur bonne -! : valeur reconstituée par le gestionnaire et jugée bonne - # : valeur estimée (mesurée ou reconstituée) que le gestionnaire juge incertaine



### modules interannuels (loi de Gauss - septembre à août)

#### données calculées sur 38 ans

| module (moyenne)      | fréquence     | quinquennale sèche    | médiane               | quinquennale humide   |
|-----------------------|---------------|-----------------------|-----------------------|-----------------------|
| 2.020 [ 1.890;2.150 ] | débits (m3/s) | 1.600 [ 1.500;1.800 ] | 2.000 [ 1.700;2.400 ] | 2.400 [ 2.300;2.600 ] |

## basses eaux (loi de Galton - janvier à décembre)

#### données calculées sur 38 ans

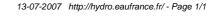
|   | fréquence          | VCN3 (m3/s)           | VCN10 (m3/s)          | QMNA (m3/s)           |
|---|--------------------|-----------------------|-----------------------|-----------------------|
| Ī | biennale           | 0.160 [ 0.120;0.220 ] | 0.190 [ 0.140;0.250 ] | 0.350 [ 0.300;0.410 ] |
| Ī | quinquennale sèche | 0.063 [ 0.043;0.088 ] | 0.076 [ 0.051;0.100 ] | 0.220 [ 0.180;0.260 ] |

### crues (loi de Gumbel - septembre à août)

#### données calculées sur 36 ans

| fréquence      | QJ (m3/s)             | QIX (m3/s)            |
|----------------|-----------------------|-----------------------|
| biennale       | 12.00 [ 11.00;13.00 ] | 14.00 [ 13.00;15.00 ] |
| quinquennale   | 15.00 [ 14.00;17.00 ] | 19.00 [ 17.00;21.00 ] |
| décennale      | 18.00 [ 16.00;20.00 ] | 21.00 [ 20.00;24.00 ] |
| vicennale      | 20.00 [ 18.00;23.00 ] | 24.00 [ 22.00;28.00 ] |
| cinquantennale | 23.00 [ 21.00;27.00 ] | 27.00 [ 25.00;32.00 ] |
| centennale     | non calculé           | non calculé           |

## maximums connus (par la banque HYDRO)


| hauteur maximale instantanée (cm) |         |                       |
|-----------------------------------|---------|-----------------------|
| débit instantané maximal (m3/s)   | 27.10 # | 1 décembre 1969 00:00 |
| débit journalier maximal (m3/s)   | 21.50 # | 6 janvier 1994        |

## débits classés

## données calculées sur 13695 jours

| fréquence    | 0.99  | 0.98  | 0.95  | 0.90  | 0.80  | 0.70  | 0.60  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05  | 0.02  | 0.01  |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| débit (m3/s) | 10.40 | 8.580 | 6.030 | 4.370 | 2.970 | 2.270 | 1.780 | 1.380 | 1.060 | 0.756 | 0.502 | 0.314 | 0.219 | 0.159 | 0.114 |







HYDRO - Synthèse 194/07/Friday 10h52



Hydro > Accueil > Recherche > Visualisation des données > Synthèse

Stations: Tout décocher / cocher ✓ L0050630 La Vienne à Eymoutiers



SYNTHESE: données hydrologiques de synthèse (1994 - 2007)

## LA VIENNE à EYMOUTIERS

code station: L0050630 producteur: DIREN Limousin bassin versant: 369 km² e-mail: diren@limousin.ecologie.gouv.fr

Calculées le 16/06/2007 - Intervalle de confiance : 95 %

#### écoulements mensuels (naturels) - données non calculées

|                 | janv. | févr. | mars | avr. | mai | juin | juil. | aoùt | sept. | oct. | nov. | dec. | année |
|-----------------|-------|-------|------|------|-----|------|-------|------|-------|------|------|------|-------|
| débits (m3/s)   |       |       |      |      |     |      |       |      |       |      |      |      |       |
| Qsp (l/s/km2)   |       |       |      |      |     |      |       |      |       |      |      |      |       |
| lame d'eau (mm) |       |       |      |      |     |      |       |      |       |      |      |      |       |

Qsp : débits spécifiques

Les codes de validité affichés sont : . (espace) : valeur

onne
!: valeur reconstituée
par le gestionnaire et
jugée bonne
. # : valeur 'estimée' (mesurée ou reconstituée) que le gestionnaire juge incertaine

Graphique des écoulements mensuels



#### modules interannuels ( loi de Gauss - septembre à août ) - données non calculées

| module    |               |                    |         |                     |
|-----------|---------------|--------------------|---------|---------------------|
| (moyenne) | fréquence     | quinquennale sèche | médiane | quinquennale humide |
|           | débits (m3/s) |                    |         |                     |

Les valeurs entre crochets représentent les bornes de l'intervalle de confiance dans lequel la valeur exacte du paramètre estimé a 95% de chance de se trouver.

## basses eaux ( loi de Galton - janvier à décembre ) - données non calculées

| fréquence          | VCN3 (m3/s) | VCN10 (m3/s) | QMNA (m3/s) |
|--------------------|-------------|--------------|-------------|
| biennale           |             |              |             |
| quinquennale sèche |             |              |             |

Les valeurs entre crochets représentent les bornes de l'intervalle de confiance dans lequel la valeur exacte du paramètre estimé a 95% de chance de se trouver.

#### crues ( loi de Gumbel - septembre à août ) - données non calculées

| fréquence | QJ (m3/s) | QIX (m3/s) |
|-----------|-----------|------------|
| biennale  |           |            |

http://hydro.eaufrance.fr/presentation/procedure.php

Page 1 sur 2







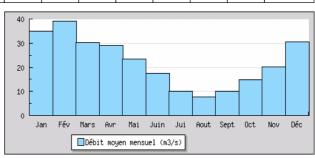
## LA VIENNE à SAINT-LEONARD-DE-NOBLAT [SEMPINET]

Code station: L0140620 Bassin versant: 997 km²

Producteur : EDF E-mail: DTG-DEMANDE-DONNEES-HYDRO@edf.fr

SYNTHESE: données hydrologiques de synthèse (1968 - 2000) Calculées le 16/06/2007 - Intervalle de confiance : 95 %

### écoulements mensuels (naturels)


#### données calculées sur 33 ans

|                 | janv.   | fév.    | mars    | avr.  | mai   | juin  | juil.   | août    | sept.  | oct.    | nov.  | déc.    | Année |
|-----------------|---------|---------|---------|-------|-------|-------|---------|---------|--------|---------|-------|---------|-------|
| Débits (m3/s)   | 35.00 # | 39.00 # | 30.30 # | 28.90 | 23.40 | 17.40 | 10.20 # | 7.680 # | 9.930# | 14.80 # | 20.20 | 30.40 # | 22.20 |
| Qsp (l/s/km2)   | 35.1 #  | 39.1 #  | 30.4 #  | 29.0  | 23.5  | 17.5  | 10.2 #  | 7.7 #   | 10.0 # | 14.8 #  | 20.2  | 30.5 #  | 22.2  |
| Lame d'eau (mm) | 94 #    | 97 #    | 81 #    | 75    | 62    | 45    | 27 #    | 20 #    | 25 #   | 39 #    | 52    | 81 #    | 704   |

Qsp : débits spécifiques

- Qsp : débits specing Codes de validité : (espace) : valeur bonne -! : valeur reconstituée par le gestionnaire et jugée bonne

  - # : valeur estimée (mesurée ou reconstituée) que le gestionnaire juge incertaine



### modules interannuels (loi de Gauss - septembre à août)

#### données calculées sur 33 ans

| module (moyenne)      | fréquence     | quinquennale sèche    | médiane               | quinquennale humide   |
|-----------------------|---------------|-----------------------|-----------------------|-----------------------|
| 22.20 [ 20.60;23.70 ] | débits (m3/s) | 18.00 [ 16.00;19.00 ] | 22.00 [ 19.00;26.00 ] | 27.00 [ 25.00;29.00 ] |

## basses eaux (loi de Galton - janvier à décembre)

#### données calculées sur 33 ans

| fréquence          | VCN3 (m3/s)           | VCN10 (m3/s)          | QMNA (m3/s)           |
|--------------------|-----------------------|-----------------------|-----------------------|
| biennale           | 3.900 [ 3.400;4.400 ] | 4.500 [ 3.900;5.100 ] | 6.700 [ 6.000;7.400 ] |
| quinquennale sèche | 2.700 [ 2.300;3.100 ] | 3.200 [ 2.700;3.600 ] | 4.900 [ 4.300;5.500 ] |

### crues (loi de Gumbel - septembre à août)

#### données calculées sur 32 ans

| fréquence      | QJ (m3/s)             | QIX (m3/s)            |
|----------------|-----------------------|-----------------------|
| biennale       | 93.00 [ 86.00;100.0 ] | 110.0 [ 99.00;120.0 ] |
| quinquennale   | 120.0 [ 110.0;140.0 ] | 140.0 [ 130.0;160.0 ] |
| décennale      | 140.0 [ 130.0;170.0 ] | 160.0 [ 150.0;180.0 ] |
| vicennale      | 160.0 [ 150.0;190.0 ] | 180.0 [ 160.0;210.0 ] |
| cinquantennale | 190.0 [ 170.0;230.0 ] | 210.0 [ 190.0;250.0 ] |
| centennale     | non calculé           | non calculé           |

## maximums connus (par la banque HYDRO)

| hauteur maximale instantanée (cm) |       |                      |
|-----------------------------------|-------|----------------------|
| débit instantané maximal (m3/s)   | 211.0 | 1 janvier 1994 00:00 |
| débit journalier maximal (m3/s)   | 184.0 | 7 janvier 1994       |

## débits classés

## données calculées sur 11779 jours

| fréquence    | 0.99  | 0.98  | 0.95  | 0.90  | 0.80  | 0.70  | 0.60  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05  | 0.02  | 0.01  |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| débit (m3/s) | 89.90 | 78.30 | 60.40 | 46.80 | 34.60 | 27.10 | 21.60 | 17.20 | 13.90 | 11.10 | 8.720 | 6.410 | 5.020 | 3.600 | 2.800 |











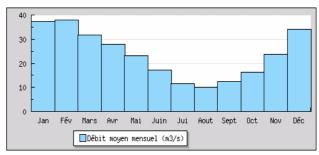
## LA VIENNE à SAINT-PRIEST-TAURION

Code station: L0140610 Bassin versant: 1156 km²

Producteur: DIREN Limousin E-mail: diren@limousin.ecologie.gouv.fr

SYNTHESE: données hydrologiques de synthèse (1943 - 2007) Calculées le 16/06/2007 - Intervalle de confiance : 95 %

### écoulements mensuels (naturels)


#### données calculées sur 65 ans

|                 | janv.   | fév.    | mars    | avr.    | mai     | juin   | juil.   | août   | sept.   | oct.    | nov.    | déc.    | Année |
|-----------------|---------|---------|---------|---------|---------|--------|---------|--------|---------|---------|---------|---------|-------|
| Débits (m3/s)   | 37.20 # | 37.80 # | 31.60 # | 28.00 # | 23.00 # | 17.10# | 11.60 # | 10.10# | 12.50 # | 16.40 # | 23.60 # | 34.10 # | 23.50 |
| Qsp (l/s/km2)   | 32.2#   | 32.7 #  | 27.3 #  | 24.2 #  | 19.9 #  | 14.8 # | 10.1 #  | 8.7 #  | 10.8 #  | 14.2 #  | 20.4 #  | 29.5 #  | 20.3  |
| Lame d'eau (mm) | 86 #    | 81 #    | 73 #    | 62 #    | 53 #    | 38 #   | 26#     | 23 #   | 27 #    | 37 #    | 52 #    | 79 #    | 644   |

Qsp : débits spécifiques

- Codes de validité : (espace) : valeur bonne
  - (espace) : vaieur porine -! : valeur reconstituée par le gestionnaire et jugée bonne
  - # : valeur estimée (mesurée ou reconstituée)

que le gestionnaire juge incertaine



### modules interannuels (loi de Gauss - septembre à août)

#### données calculées sur 65 ans

| module (moyenne)      | fréquence     | quinquennale sèche    | médiane               | quinquennale humide   |
|-----------------------|---------------|-----------------------|-----------------------|-----------------------|
| 23.50 [ 22.00;25.10 ] | débits (m3/s) | 18.00 [ 16.00;20.00 ] | 24.00 [ 21.00;27.00 ] | 30.00 [ 28.00;32.00 ] |

## basses eaux (loi de Galton - janvier à décembre)

#### données calculées sur 65 ans

|   | fréquence          | VCN3 (m3/s)           | VCN10 (m3/s)          | QMNA (m3/s)           |
|---|--------------------|-----------------------|-----------------------|-----------------------|
|   | biennale           | 4.200 [ 3.700;4.700 ] | 4.800 [ 4.200;5.500 ] | 7.000 [ 6.200;7.800 ] |
| Ī | quinquennale sèche | 2.600 [ 2.300;3.000 ] | 3.000 [ 2.600;3.500 ] | 4.500 [ 3.900;5.100 ] |

### crues (loi de Gumbel - septembre à août)

#### données calculées sur 63 ans

| fréquence      | QJ (m3/s)             | QIX (m3/s)            |  |  |
|----------------|-----------------------|-----------------------|--|--|
| biennale       | 110.0 [ 100.0;120.0 ] | 130.0 [ 120.0;140.0 ] |  |  |
| quinquennale   | 150.0 [ 140.0;170.0 ] | 180.0 [ 170.0;210.0 ] |  |  |
| décennale      | 180.0 [ 170.0;200.0 ] | 220.0 [ 200.0;250.0 ] |  |  |
| vicennale      | 210.0 [ 190.0;240.0 ] | 250.0 [ 230.0;290.0 ] |  |  |
| cinquantennale | 240.0 [ 220.0;280.0 ] | 300.0 [ 270.0;340.0 ] |  |  |
| centennale     | non calculé           | non calculé           |  |  |

## maximums connus (par la banque HYDRO)

| hauteur maximale instantanée (cm) | 271   | 7 janvier 1982 02:55 |
|-----------------------------------|-------|----------------------|
| débit instantané maximal (m3/s)   | 266.0 | 1 juillet 1969 00:00 |
| débit journalier maximal (m3/s)   | 216.0 | 7 janvier 1982       |

## débits classés

## données calculées sur 21695 jours

| fréquence    | 0.99  | 0.98  | 0.95  | 0.90  | 0.80  | 0.70  | 0.60  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05  | 0.02  | 0.01  |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| débit (m3/s) | 97.60 | 82.30 | 62.50 | 47.40 | 35.50 | 27.80 | 22.20 | 17.80 | 14.10 | 11.20 | 8.500 | 5.850 | 4.130 | 2.850 | 2.010 |



13-07-2007 http://hydro.eaufrance.fr/ - Page 1/1







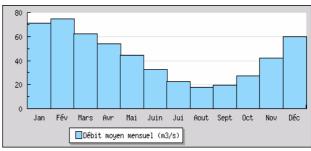
### LA VIENNE AU PALAIS-SUR-VIENNE

Code station: L0400610 Bassin versant: 2296 km²

Producteur : DIREN Limousin E-mail: diren@limousin.ecologie.gouv.fr

SYNTHESE : données hydrologiques de synthèse (1923 - 2007) Calculées le 17/12/2007 - Intervalle de confiance : 95 %

### écoulements mensuels (naturels)


#### données calculées sur 85 ans

|                 | janv.   | fév.    | mars    | avr.    | mai     | juin    | juil.   | août    | sept.  | oct.    | nov.    | déc.  | Année |
|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|-------|-------|
| Débits (m3/s)   | 70.90 # | 74.40 # | 62.30 # | 53.90 # | 44.50 # | 32.60 # | 22.50 # | 17.70 # | 19.70# | 27.20 # | 42.30 # | 59.90 | 43.80 |
| Qsp (l/s/km2)   | 30.9 #  | 32.4 #  | 27.1 #  | 23.5 #  | 19.4 #  | 14.2 #  | 9.8 #   | 7.7 #   | 8.6#   | 11.9 #  | 18.4 #  | 26.1  | 19.1  |
| Lame d'eau (mm) | 82 #    | 81 #    | 72 #    | 60 #    | 51#     | 36 #    | 26 #    | 20 #    | 22 #   | 31 #    | 47 #    | 69    | 604   |

Qsp : débits spécifiques Codes de validité :

- (espace) : valeur bonne - ! : valeur reconstituée par le gestionnaire et jugée bonne - # : valeur estimée (mesurée ou reconstituée)

que le gestionnaire juge incertaine



## modules interannuels (loi de Gauss - septembre à août)

#### données calculées sur 85 ans

| module (moyenne)      | fréquence     | quinquennale sèche    | médiane               | quinquennale humide   |
|-----------------------|---------------|-----------------------|-----------------------|-----------------------|
| 43.80 [ 41.70;46.00 ] | débits (m3/s) | 34.00 [ 31.00;36.00 ] | 44.00 [ 40.00;49.00 ] | 54.00 [ 51.00;56.00 ] |

## basses eaux (loi de Galton - janvier à décembre)

#### données calculées sur 85 ans

| fréquence          | VCN3 (m3/s)           | VCN10 (m3/s)          | QMNA (m3/s)           |
|--------------------|-----------------------|-----------------------|-----------------------|
| biennale           | 6.900 [ 6.200;7.700 ] | 8.300 [ 7.500;9.100 ] | 12.00 [ 11.00;13.00 ] |
| quinquennale sèche | 4.300 [ 3.700;4.800 ] | 5.200 [ 4.600;5.800 ] | 7.400 [ 6.600;8.300 ] |

## crues (loi de Gumbel - septembre à août)

## données calculées sur 85 ans

| fréquence      | QJ (m3/s)             | QIX (m3/s)            |
|----------------|-----------------------|-----------------------|
| biennale       | 210.0 [ 200.0;220.0 ] | 250.0 [ 240.0;270.0 ] |
| quinquennale   | 290.0 [ 280.0;320.0 ] | 350.0 [ 330.0;380.0 ] |
| décennale      | 350.0 [ 330.0;380.0 ] | 410.0 [ 380.0;450.0 ] |
| vicennale      | 400.0 [ 370.0;440.0 ] | 470.0 [ 440.0;520.0 ] |
| cinquantennale | 470.0 [ 430.0;530.0 ] | 550.0 [ 510.0;620.0 ] |
| centennale     | non calculé           | non calculé           |

## maximums connus (par la banque HYDRO)

| hauteur maximale instantanée (cm) | 304   | 7 janvier 1982 04:50 |
|-----------------------------------|-------|----------------------|
| débit instantané maximal (m3/s)   | 600.0 | 1 octobre 1960 00:00 |
| débit journalier maximal (m3/s)   | 510.0 | 8 décembre 1944      |

## débits classés

## données calculées sur 31031 jours

|   | fréquence    | 0.99  | 0.98  | 0.95  | 0.90  | 0.80  | 0.70  | 0.60  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05  | 0.02  | 0.01  |
|---|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Ī | débit (m3/s) | 186.0 | 153.0 | 116.0 | 91.00 | 66.50 | 52.00 | 41.00 | 33.00 | 26.00 | 20.00 | 14.80 | 10.20 | 7.790 | 5.600 | 4.530 |





# **Annexe 3**

Résultats détaillés des calculs de potentiel de production réalisés avec le logiciel NewPCH





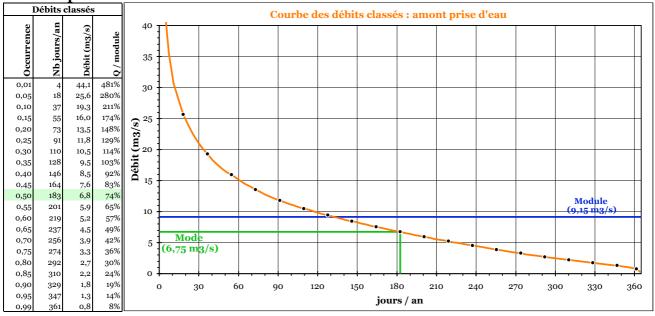
| Logiciel NewPCH v2.1 B5dev8                                                       |                        |                     |            | Nom du fichier sauvegardé: NewPCHv2                              | NewPCHv21x_ LaBorie                               | П                   |
|-----------------------------------------------------------------------------------|------------------------|---------------------|------------|------------------------------------------------------------------|---------------------------------------------------|---------------------|
| Saisie des données de base                                                        |                        | lu proj             | et et de   | du projet et des hypothèses à simuler                            |                                                   | Actuel              |
| • Équipement                                                                      |                        |                     |            | <ul> <li>Tarifs sélectionnés</li> </ul>                          |                                                   |                     |
| 1) Définition du type decontrat                                                   | (Hexagone)             | jone)               | F          | Tarif Andi                                                       | Ancienne<br>C. T1997                              |                     |
| O Nouvelle centrale, contrat Type 2007.NC                                         | )7.NC                  |                     | 2          | actualisé pour 2007 2 Ta                                         | 2 Tarifs                                          | Hydro-m             |
| © Centrale existante sous contrat Type 1997                                       | ne 1997                |                     |            | part équipement concerné 100                                     | 0001                                              | calculé             |
| ig  igcop Centrale existante, nouveau contrat Type 2001.CE                        | : Type 2001.0          | CE                  |            | Prix hiver 8,1                                                   | 8,147                                             | ct_€/kWh            |
| 2) Projet avec augmentation de puissan                                            | puissance              | ce?                 | FAUX       | Prix été 3,2                                                     | 3,276                                             | ct_€/kWh            |
| 3) Indiquer l'année en cours                                                      |                        |                     | 2007       | Majoration investissement PAUX                                   |                                                   | ct_€/kWh            |
| 4) Choix 1 ou 2 tarifs (été-hiver)                                                | •                      |                     | 2          | Majoration qualité max 1,6                                       | 1,684                                             | ct_€/kWh            |
| <ul> <li>Part contrat Type 97 existant : 2 Tarifs (été≠hiver) + primes</li> </ul> | Tarifs (été≠           | hiver) + ı          | primes     | Hydrologie                                                       |                                                   |                     |
| • Part NIIe centrale ou nouv contrat ou augm de puissance :                       | ou augm d              | le puissan          | . eo       | 1) Situation de la prise d'eau                                   |                                                   | 444                 |
| choisir entre : O 1Tarif (été=hiver)                                              | •                      | 2Tarifs (été≠hiver) | hiver)     | Nom du cours d'eau Cours = Vienne                                | Je                                                |                     |
| 5) Description usine                                                              |                        |                     |            | Surface du BV à la prise d'eau <b>SI</b>                         | Sbv = 444                                         | 444 km <sup>2</sup> |
| Nom usine ou site : Moulin de La Bori                                             | le La Borie            |                     |            | 2) Période de la série chronologique hydrologique                | hydrologique                                      |                     |
|                                                                                   | Équipt.<br>actuel      | INACTIF             |            | 1ère année de la série hydro AnDeb                               | eb = 1969                                         |                     |
| Hauteur de chute brute                                                            | 7                      |                     | 8          | dernière année de la série hydro AnF                             | AnFin = 2007                                      |                     |
| Hauteur de chute nette Hn                                                         | 2,3                    |                     | E          | 3) Station HYDRO de référence utilisée                           | 9.                                                |                     |
| Débit turbiné mini                                                                | 1,5                    |                     | m³/s       | Nom de la station Peyrelevade                                    |                                                   |                     |
| Débit turbiné maxi                                                                | 5,5                    |                     | m³/s       | Nom du cours d'eau jaugé <mark>Vienne</mark>                     |                                                   |                     |
| Débit réservé hiver                                                               | 1,25                   |                     | m³/s       | Code HYDRO de la station CodeH                                   | -                                                 | L0010610            |
| Débit réservé été                                                                 | 1,25                   |                     | m³/s       | Surface du BV à la station Hydro <b>Sbv</b>                      | SbvH = <b>58,5</b>                                | km <sup>2</sup>     |
| Autres débits non turbinables                                                     |                        |                     | m³/s       | 4) Reconstitution de l'hydrologie à la prise d'eau               | prise d'eau                                       | 4                   |
| Puissance brute installée                                                         | 108                    |                     | kW calculé | Simple rapport de BV avec station Hydro                          | Rapport de BV:                                    |                     |
| Part ancien/futur                                                                 | 100%                   |                     | % calculé  | Rapport de BV puissance 0,8                                      | icun rapport de BV appliqué                       | , appliqué          |
| Rendement moyen global                                                            | %0'09                  |                     |            |                                                                  | RapBV =                                           | 1,0000              |
| Puissance max fournie                                                             | 74                     |                     | kW calculé | (e) Reconstitution plus complexe                                 | Résultat : module ≈ 9,2 m3/s                      | m3/s                |
| • Hauteur de chute                                                                |                        |                     |            | <ul> <li>Débit max turbiné</li> </ul>                            |                                                   |                     |
| Voulez-vous calculer la chute véritable en fonction du débit                      | ible en fonc           | tion du dé          | bit ?      | Voulez-vous indexer le débit max turbiné à la hauteur de chute ? | à la hauteur de                                   | chute ?             |
| ○ NON, chute = Hn ● OUI, ch                                                       | • OUI, chute = f(Q,Hn) |                     | 2          | NON, Qmax = Qéquipement OUI, Q                                   | OUI, Qmax = f(H chute réelle)                     | éelle) 1            |
| • Sécurité : débit d'arrêt de la                                                  |                        | centrale            | 80         | m³/s Developper conta                                            | Developper contact: benoit.teyssendier@wanadoo.fr | er@wanadoo.fr       |
|                                                                                   |                        |                     |            |                                                                  |                                                   | 1                   |

## Hydrologie comparée : prise d'eau et tronçon court circuité

Logiciel NewPCH v2.1 β5dev∂

Moulin de La Borie Scénario: Actuel



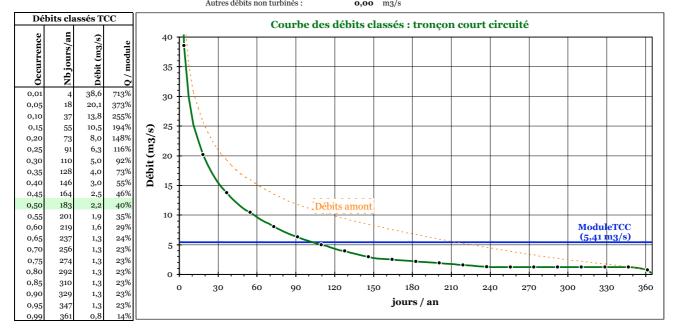

Site : Vienne à Moulin de La Borie (surface BV = 444 km2)

Station HYDRO choisie pour la reconstitution : Reconstitution complexe (voir rapport)

Formule appliquée : Reconstitution complexe (voir rapport)

Période prise en compte pour l'analyse hydrologique : 1969 à 2007 (39 années valides)

## • Amont prise d'eau

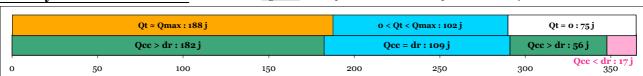



### • Secteur court circuité

Débit turbiné maxi : 5,5 m3/s Débit turbiné mini : 1,5 m3/s 
 Débit réservé été & hiver (m3/s) :

 jan
 fév
 mars
 avr
 mai
 juin
 juil
 aoû
 sep
 oct
 nov
 déc

 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25
 1,25




## • Analyse des situations

<u>légende</u>:

Qt = débit turbiné

Qcc = débit du tronçon court circuité





Actuel

déc

Usine hydroélectrique : Moulin de La Borie Équipement testé :



Chute nette: 2,3 0,60 Rendement: | Débit turbiné maxi : 5,5 m3/s | Débit turbiné mini : 1,5 m3/s | Débit réservé été & hiver: 1,3 & 1,3 m3/s | |

| jan | fév | mars | avr | mai | juin | ju |
|-----|-----|------|-----|-----|------|----|
| 1,3 | 1,3 | 1,3  | 1,3 | 1,3 | 1,3  | 1, |
|     |     |      |     |     |      |    |

oct nov

|                        |              |        |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 1,3      | &                             |         | 3 m         | 3/s                   |                | 1,3     |                                          | 1,3               |                | 1,           | 3            |         | 1,3         |                                             | 1,3           |                | 1,3                                          | 3                |          | 1,3       |                                              | 1,3      |       | 1,                     | 3                                     | 1,3      |         | 1,3   |                     | 1,3                      |
|------------------------|--------------|--------|----------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------------------------------|---------|-------------|-----------------------|----------------|---------|------------------------------------------|-------------------|----------------|--------------|--------------|---------|-------------|---------------------------------------------|---------------|----------------|----------------------------------------------|------------------|----------|-----------|----------------------------------------------|----------|-------|------------------------|---------------------------------------|----------|---------|-------|---------------------|--------------------------|
| Hydro-m                | 1            | Autres | aebi     | ts non                                 | turb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ines :  |          | 0,0                           | 1       | m3/s        |                       |                |         |                                          |                   |                |              |              |         |             | Ra                                          | appel         | l : Sta        | tion H                                       | IYDR             | O ch     | oisie     | pour                                         | la re    | const | ituti                  | on : Re                               | constitu | ution c | omple | Calcul s<br>xe (voi | sur 39 ans<br>r rapport) |
|                        | Moyenne      | 1969   | 1970     | 1971                                   | 19/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1974    | 1975     | 1976                          | 1978    | 1979        | 1981                  | 1982           | 1983    | 1984                                     | 1986              | 1987           | 1988         | 1990         | 1991    | 1992        | 1993                                        | 1995          | 1996           | 1997                                         | 1999             | 2000     | 2001      | 2002                                         | 2004     | 2005  | 2006                   | , , , , , , , , , , , , , , , , , , , |          |         |       |                     |                          |
| Débits turbinés (m     | oyennes me   | ensu   | elle     | s en                                   | m <sup>3</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s) - i  | l int    | ègre                          | les c   | ontr        | ainte                 | es lié         | es à    | la r                                     | esso              | urce           | (hy          | drol         | ogie    | mes         | uré                                         | e) et         | àl'            | équip                                        | eme              | nt t     | esté      |                                              |          |       |                        |                                       |          |         |       |                     |                          |
| janvier                |              |        | 5,5      | 8, 4                                   | ა ი                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 5,2      | 5,4<br>5,4                    | 5,5     | 5,5         | 5,5                   | 5,5            |         | ເດັ ແ<br>ເບັ 4                           | 5,1               | 5,2            | 5,5          | 1,0          | 5,5     | 0,4 r       | 4 r.                                        | 5,5           | 5,5            | 4,6                                          | 5,5              | 5,5      | 5,5       | 7,4                                          | 5,3      | 5,4   | 4, π,<br>α, π,         | 3,3                                   |          |         |       |                     |                          |
| février                | 5,1          | 5,5    | 5,5      | 5,5                                    | o, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,5     | 5,5      | 5,2                           | 5,5     | 5,5         | 5,5                   | 4,8            | 5,5     | ເດັ ແ                                    | 5,5               | 5,2            | 5,5          | 6,4          | 5,0     | 3,9         | и г.<br>й г.                                | 5,5           | 5,5            | 7,4                                          | 5,5              | 5,5      | 5,5       | 5,5                                          | 5,3      | 5,5   | 4<br>ci ri             | င်္ဂ<br>င                             |          |         |       |                     |                          |
| mars                   | 5,2          | 5,5    | 5,5      | 5,5                                    | ,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,5     | 5,5      | 5,0                           | 5,5     | 5,5         | 5,5                   | 5,5            | 5,5     | 4, r                                     | 5,1               | 5,5            | 5,5          | 8,4          | 5,5     | 4 .<br>ci i | 7,7                                         | 5,5           | 5,5            | 4,5<br>5,5                                   | 5,5              | 5,5      | 5,5       | 5,5                                          | 8,4      | 5,3   | 5,5                    | c,c                                   |          |         |       |                     |                          |
| avril                  | 5,0          | 5,5    | 5,5      | 5,4                                    | , 4<br>, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,5     | 5,5      | 3,3                           | 5,5     | 5,5         | 5,5                   | 4 <del>,</del> | 5,5     | 4,9<br>7                                 | 5,5               | 5,5            | 5,5          | 6,4          | 5,5     | 5,2         | , <del>,</del> 7, 5, 5, 5                   | 0,0           | 4 <del>,</del> | 1,6                                          | 5,5              | 5,5      | 5,5       | 3,5                                          | 5,5      | 5,5   | 5,4                    | τ <del>,</del>                        |          |         |       |                     |                          |
| mai                    |              |        | 2,0      | 5,4                                    | 3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,4     |          | 1,6                           | 5,5     |             | ξ, τ.<br>5, τ.        | 1,2            | 5,5     | <del>4,</del> π                          | 5,5               | 4,             | 5,0          | _            |         | 5,5         | , rč                                        | . <del></del> | 5,1            | 0, 7,                                        | 5,5              | 5,5      | 5,5       | 4 %<br>7 0,                                  | 2,       | 8,    | 4,1                    |                                       |          |         |       |                     |                          |
| juin                   |              | 5,5    | 3,0 ;    | 5,3                                    | ,,'<br>, 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 8,4      | 5,5                           | 1,1     | 0,0         | χ <del>τ</del><br>γ τ | 9,0            | 6,3     | τύ α<br>-                                |                   | 4,             | 2, 6         | _            | 3,0,5   |             | ζ,<br>, , , , , , , , , , , , , , , , , , , | <u> </u>      | <u>.</u>       | 3,9 4                                        | 1,1              | 5,3      | 2,7       | 4,7,7<br>0,8                                 | ζ,<br>., | •     | 1,3                    | -                                     |          |         |       |                     |                          |
| juillet                |              |        |          | 3,1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 4,       | 0,0                           | 9;      | 5,3         | , 1,0<br>1,9          | 0,0            | 0,0     | 3, 6,                                    | , 9,0             | 8,             | 3,4          | 8,0          |         |             | 4. rč                                       | o,            | ,5             | <u>3</u> 4                                   | 6,               | 4,       | 42        | , 2,<br>, 0                                  | 4,       | 9,0   | . 5,1                  |                                       |          |         |       |                     |                          |
| août                   |              | 1,1    | 2,       | 0, 9                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | o,<br>L  | 0,0                           | 4,      | 6,1         | ; 4;<br>; 4           | 0,5            | 9,5     | 1, 2                                     | , ,,              | 2,0            | 0,1          |              | 2,0     | 3,5         | 2, 1, 2, 1, 2, 4, 0                         | 0,0           | 0,0            | 2,1 2                                        | . <u></u>        | 1,1      | 3,5       | 5, 0, 5, 0, 1, 0<br>0, 1, 0                  | 3,3      | -     | 0,3                    |                                       |          |         |       |                     |                          |
| septembre              |              |        | 0,3      | 3,9 3                                  | . 4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,8     | .,7      | 1,4 C                         | 0,0     | 0,          | λ, 8,<br>,            | 9,6            | 8,      | . 7,1                                    | 0,6               | 1,8            | 5            |              | 0,2     | 1,1         | ž :                                         |               | 0,             | 0,6                                          | , 2 <b>,</b>     | . 8,     | 2,1       | 0,1                                          | ω̈́      |       | 3.0                    |                                       |          |         |       |                     |                          |
| octobre                |              | 7 6,1  | 0,7      | 2,0                                    | , 4,<br>, 4,<br>, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 1,1      | , o                           | 5,5     | 0, 0        | ć α'<br>L L           | εż             | 0,      | 5,3                                      |                   | 4,8            | 0            |              |         | ולט ו       | υ, ο;<br>                                   | 6.00          | ۰,4            | o 4                                          | 2,0              | 7,       | ى<br>دۇ ا | ئ<br>2 رئ                                    | ,6       | 0,0   | 3,4<br>                |                                       |          |         |       |                     |                          |
| novembre               |              | 4,5 1  | ςί<br>O  | 3,5                                    | 3,0<br>4,0<br>5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | oř<br>ca | 2 ε                           | ),1 C   | 6, 1        | 4 ú                   | ά<br>4         | ,00     | 0, 0                                     | 3,6 1             | 5,5            | 1            | , 6,         |         | 75.         | ž τζ<br>υ 4                                 | . w           | ,٥             | 1,6                                          | 8, 80            | 5.       | 1,1       | ž 0.                                         | 4,<br>L  | _     | 3,3<br>2,5<br>1        |                                       |          |         |       |                     |                          |
| décembre               |              | 5,5 4  | ယ်<br>ပ၊ | 5,03                                   | υ<br>υ τ<br>υ ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | rč<br>4  | ι <b>ύ</b> ι <b>ύ</b><br>π. 4 | 9,      | ώ ı<br>rv ı | 5,5 5                 | 5,5 5          | ε,<br>1 | 5,4 5                                    | 5,3 3             | rč             | 5,5          | , 6,<br>, 4  | cí<br>4 | 5,5         | 4 rč<br>4 π:                                | , τ',<br>, ω  | ť.             | تن تن<br>4 ير                                | 5,0 2            | τč       | 3,63      | ŏ ώ<br>v ω                                   | 1, 1     | ,7    | 5,4<br>6,6<br>6,7      |                                       |          |         |       |                     |                          |
| Moyenne annuelle       | 3,7          | 4,5 5  | 3,2      |                                        | ο, 4<br>ο ο, 4<br>ο σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | ,<br>5   | 3,0<br>5,0<br>5,9             | 4.<br>ε |             | ς<br>τ, τ,<br>τ       | ζ.<br>rc       |         | 5, 5                                     | 3,5               | 8,4            | 5 1 5        | 2,9          | 3,3 4   | 5, 5        | и́ 4<br>v ro                                | 3,5 4         | 7,             | 3,4                                          | 3,8              | ςί<br>rc |           | 2, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 6,       | 2,7 3 | 3,3<br>5<br>7          |                                       |          |         |       |                     |                          |
| Moy été (avr-oct)      |              | 3,9 4  | 6,       | 6,0                                    | ν, ε;<br>Σ εί<br>ω 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 2,<br>4  | 5,7<br>5,7<br>4               | 2,9 3   | 9,0         | 2, 2,<br>2 2,<br>2 4  | 1,7            | 3,5     | 7, 7                                     | 2,63              | 2 <del>,</del> | 4 0          | , 1, 2       | 2,1 3   | 6,1         | 6,5<br>2 4                                  |               | 6,             | ε τ <del>.</del> 2                           | 3,03             | 3,3      | 3,9 4     | 5,1<br>1,3<br>1,3                            | 2,6 3    | 2 2   | 2, ε<br>4, ο<br>ε<br>2 |                                       |          |         |       |                     |                          |
| Moy hiver (nov-mars)   |              |        | 4,6      | 8,4 α<br>4 α                           | 2, t, c, 1, |         | 5,5      | 5,1 1 5,3 4                   | 4,0     | 5,4         | 5,4<br>5,4<br>7       | 5,3 1          | 9,4     | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 |                   | 5,5 4          | 5,57<br>7,57 | ; 4,<br>; 0, | 5,0     | 4,6         | , ν, τς<br>- τς, τς                         | 2, 6, 4       | 5,5            | 8, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | _                | 5,5 3    |           | 5,0                                          | ζ.<br>Ω  | 4,1   | 2 6                    | <u>,</u>                              |          |         |       |                     |                          |
|                        | ,,           | 4,     | 7        | 1 \                                    | 7 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 4,       | 4, 4,                         | 7       | α, .        | ., .,                 | 4,             | 7       | 4, 0                                     | , 1               |                | 4, (,        | . 1          | 4,      | 7 ,         | ., 4.                                       | , 1           | 4,             | 7 4.                                         | , 1              |          | 7         | 1, 4,                                        | 7        |       | , ,                    |                                       |          |         |       |                     |                          |
| Débits non turbiné     | s du secteur |        | ırt-c    | circu                                  | iité :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | déb     |          | léver                         | sant    |             |                       |                |         |                                          |                   |                |              |              |         |             |                                             | _             |                |                                              |                  |          |           |                                              |          |       |                        |                                       |          |         |       |                     |                          |
| janvier                | 9,5          | 8,6    | 10,5     | 7,5                                    | 3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,9     | 10,8     | 1,5                           | 10,1    | 7,7         | 23,5                  | 17,6           | 7,6     | 16,7                                     | 12,6              | 10,2           | 13,3         | 2, 2,        | 8,7     | 1,5         | 33,1                                        | 19,9          | 16,7           | 1,7                                          | 6,6              | 7,8      | 7,6       | 11,5                                         | 22,0     | 4,2   | ς,<br>τ, τ             | ,<br>,                                |          |         |       |                     |                          |
| février                | 10,3         | 5,1    | 38,6     | 9,5                                    | 11,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12,7    | 8,4      | 5,4                           | 18,6    | 15,6        | 6,0                   | 1,8            | 6,9     | 16,1                                     | 7,4               | 5,5            | 25,7         | ±,±          | 3,5     | 1,6         | 15,8                                        | 18,6          | 7,5            | 4,7                                          | 13,0             | 10,4     | 4,4       | 4,2<br>12,2                                  | 3,5      | 4,4   | 8,0                    | رئ.<br>د                              |          |         |       |                     |                          |
| mars                   | 7,3          | 8,5    | 12,1     | 6,3                                    | <del>2,</del> ε.<br>ε. ε.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,5     | 3,9      | 1,9<br>6,1                    | 6,4     | 13,1        | ή 4,<br>ή εί          | 5,3            | 6,3     | , , ,<br>, , ,                           | . 4<br>i 4        | 3,5            | 17,3         | , 4<br>, 0,  | 5,5     | 5,6         | 7,9                                         | 5,8           | 1,1            | 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,    | 0,0              | 9,2      | 4, 4      | 4,9                                          | 6,1      | 2,3   | 17,4                   | č,                                    |          |         |       |                     |                          |
| avri                   |              |        | 13,5 1   |                                        | ž 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          | εί 4<br>                      | 8,3 1   | _ ,         |                       | 2,5            | ~       | 6, 2, 6                                  |                   |                | 6,4          |              |         | 6,5         |                                             |               | 9              | 9 1                                          | . 9              | rŏ       | 3,4 1     | Σ εξ                                         | o.       |       | 6,6 1<br>2.4 1         |                                       |          |         |       |                     |                          |
|                        |              |        |          | 4, 6, 6, 7                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 6        | 6 4<br>1, 1,                  | 8       | 4 4         | 5,5                   | 9.             | # 15    | 4 1<br>9 0                               |                   | 8              | 9 7          | , H          | 1.4     | 5 6         | 1 9<br>1 81                                 | 9             | 1,             | 1 1,                                         | ് വ              | 8        | # 13      | , ,                                          | .57      |       |                        |                                       |          |         |       |                     |                          |
| mai                    |              |        | 8,6 6,1  | 2,3 2,4                                | 6 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 1,    | 9,       | * 5,<br>6, 1,                 | 4,      | 6 9,        | ν ω<br>*              | 9 1,           | #       | ر<br>ب رہ                                | ,,, c,,<br>,9 6,1 | ω<br>ω         | L, L         |              | 1,      | 6,0         | <i>δ</i> Γ΄<br>φ φ                          | . w           | 9 3,           | 4 3,1<br>2,7 0,1                             | ,1 6,3           | ,1 5,    | τύ<br>#   | 8 1, 1,                                      | 8<br>4   | • •   | 1,8 1,8                |                                       |          |         |       |                     |                          |
| juin                   |              |        |          | ω .<br>                                | . a<br>. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ا<br>ان | 9,       | 3 1,                          | 5 1,    | ω (i        | n o<br>n n            | 8 1,           | 1,      | ات<br>دي د                               | , t,              | 8              | 4 w          | o oo         | 33      | 0 (         | ი ი<br>გ. 4                                 | . 1,          | 0 1,           | - 0                                          | , vi             | 9.       | , i       | + 2<br>2, 1,                                 | 8 1,     | -     | - 0                    |                                       |          |         |       |                     |                          |
| juillet                |              | 1,4    | 1,9      | <del>1</del> <del>1</del> <del>1</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,      | 1,0      | ა.<br>უ. დ                    | 1,      | , i         | v, v,                 | 8,0 \$         | 1,      | <del>-</del>                             | î <del>i</del> î  | σί             | 4,2          | ਜੋ ਜੋ        | 1,      | 2, 0        | vî H                                        | 1,8           | ćį,            | 1,3                                          | , <del>,</del> , | 1,9      | 4,        | 1,6                                          | 3 1,8    |       | 2,0                    |                                       |          |         |       |                     |                          |
| août                   | 1,7          |        | 1,8      | 4, -                                   | 1,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,5     | 1,8      | 3, 0, 4,                      | 1,7     | 1,7         | 1, 1,                 | 1,3            | 1,1     | 8,1                                      | 1,5               | 1,5            | 8, 1         | 1,1          | 1,2     | 9, 9        | 3 7                                         | 1,3           | 1,5            | 1,5                                          | 1,8              | 1,8      | 1,4       | }                                            | 9,       |       | 1,6                    |                                       |          |         |       |                     |                          |
| septembre              | 2,1          | 2,7    | 1,6      | 1,8                                    | 1,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,0     | 2,1      | 2,1<br>1,4                    | 1,9     | 1,2         | 2,0                   | 1,1            | 1,9     | 9 -<br>9 -                               | 1,4               | 2,1            | 0            | 1,3          | 6,0     | 2,3         | 2,6                                         | 5,3           | 1,4            | 2,2                                          | 1,4              | 1,4      | 1,7       | 1,5                                          | 1,8      | 1,5   | 2,5                    | į                                     |          |         |       |                     |                          |
| octobre                | 3,6          | 1,5    | 1,6      | 1,5                                    | 4,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14,9    | 1,7      | 4,6<br>2,2                    | 2,0     | 1,8         | 5,8                   | 4,1            | 1,7     | rç, ς<br>α, α                            | 1,6               | 8,6            | 7            | 3,5          | 1,7     | 8,2         | 3,3                                         | 1,6           | 2,1            | 1,8                                          | 1,7              | 2,4      | 1,8       | 1,9<br>2,2                                   | 1,7      | 1,4   | 1,5                    | ) î                                   |          |         |       |                     |                          |
| novembre               | 5,4          | 8,9    | 5,6      | 2,9                                    | 2, 2,<br>5, 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21,7    | 6,1      | 14,0<br>3,1                   | 2,2     | 4, c        | ,, o, <del>1</del>    | 5,4            | 3,5     | 3,9                                      | 2,4               | 6,7            | 0            | į 4;         | 5,1     | 20,2        | 8, i,                                       | 1,7           | 7,3            | 3,6                                          | 1,8              | 22,7     | 1,4       | 0,3                                          | 2,0      | 1,7   | 2,8                    | ۲,7                                   |          |         |       |                     |                          |
| décembre               | 8,5          | 10,2   | 2,1      | 2,0                                    | 4,4<br>12,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17,2    | 0,9      | 19,2<br>4,3                   | 4,0     | 14,7        | 9,5<br>25,9           | 23,4           | 7,0     | 6,0                                      | 7,3               | 4,4            | 19,4         | 2, 1,        | 2,0     |             | 5,5                                         | 5,5           | 8,11           | 7,9                                          | 13,0             | 2,6      | 6, 3      | 2,0<br>4,0<br>6,0                            | 3,5      | 2,9   | 4,4                    | **/                                   |          |         |       |                     |                          |
| Moyenne annuelle       | 5,4          | 6,5    | 7,4      | 3,7                                    | ς,ς<br>3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,7     | 4,9      | 4,6<br>6,9                    | 2,8     | 7,5         | 2,0                   | 2,7            | 2,6     | 4,5                                      | 5,4               | 5,5            | 9,8          | 3,9          | 3,4     | 6,1         | /,o<br>0,3                                  | 6,3           | 5,1            | 7, 7,                                        | 5,4              | 9,9      | 6,2       | 3, 12,                                       | 4,3      | 2,7   | 4, 6,                  | č<br>1                                |          |         |       |                     |                          |
| Moy été (avr-oct)      | 3,4          | 4,9    |          | 4, 6                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 3,4      | 1,9                           | 3,0     | 4,6         | 0,4                   | 1,9            | 5,5     | 3,1                                      | 7,4               | 7,4            | c,<br>rt     |              | 2,4     | 6, t        | ć κ.                                        | 2,0           | 2,0            | 1,8                                          | 3,0              | 3,4      | 6,4       | 1,9                                          | 2,7      | 2,4   | 2, 2,<br>13, 2,        | ň<br>ň                                |          |         |       |                     |                          |
| Moy hiver (nov-mars)   | 8,2          |        |          | 5,6                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       | 2,0      | 8,4                           | 2,6     | 0,11        | 11,3                  | 6,01           | 6,5     | 9,8                                      | 6,4               | 0,9            | 17,4         |              |         | 9,8         | 5,0<br>14,2                                 |               | 9,2            | 4,0                                          |                  | 11,2     | 6,1       | 5,1                                          | 9,9      | 3,1   | 7,0                    | <del>2,</del>                         |          |         |       |                     |                          |
|                        |              |        | •        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |                               |         |             |                       | -              |         |                                          |                   | •              |              |              |         |             |                                             |               |                |                                              |                  |          |           |                                              |          |       |                        |                                       |          |         |       |                     |                          |
| Nombre de jours        | 1            |        | 10       | <b>α</b> •                             | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | ~        | _ ~                           | ,,      | 10          |                       | ~              |         | ol                                       |                   | ~              |              |              | ~       |             |                                             |               | ~              | e ~                                          | , (1             | ~        |           | 0 ~1                                         | _        | ~     | o ,                    | _                                     |          |         |       |                     |                          |
| nb jours turbinés      | 290          |        |          | 348                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          | 241                           |         |             | 339                   |                |         | 312                                      |                   | . 343          | 166          |              |         | _           | 310                                         |               | 258            | 299                                          |                  | 318      |           | 242<br>242                                   | 271      |       | 280                    |                                       |          |         |       |                     |                          |
| nb jours turb Qmax     | 188          | 255    | 168      | 195                                    | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 217     | 207      | 129<br>269                    | 174     | 227         | 240                   | 168            | 195     | 206                                      | 184               | 284            | 0.0          | 116          | 174     | 220         | 261                                         | 153           | 173            | 114                                          | 197              | 234      | 204       | 150                                          | 146      | 137   | 138                    | 140                                   |          |         |       |                     |                          |
| nb j. Qtronçon cc < dr | 17           | 0      | 11       | 0 4                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8       | 0        | 61                            | 0       | 26          | 9                     | 54             | .,      | 4 8                                      |                   |                | 2            | •            | -       | 0 0         | 29                                          | 31            | 16             | 0 4                                          | rc.              | 16       | 0         | 37                                           | 4        | • •   | 0 0                    |                                       |          |         |       |                     |                          |
| nb j. Qtronçon cc = dı | 109          | 89     | 26       | 154                                    | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73      | 108      | 112                           | 107     | 73          | 72                    | 78             | 55      | 108                                      | 101               | 73             | r,           | 125          | 81      | 102         | 51                                          | 141           | 93             | 192                                          | 110              | 86       | 142       | 10/                                          | 135      | 85    | 147                    | <u>+</u>                              |          |         |       |                     |                          |

Usine hydroélectrique: Moulin de La Borie

| Logiciei NewPCH V2.1 ISSGeV                                                       |                       |                   | Nom du fichier sauvegarde: NewPCHVZIX_                         | 1VZ1X_ LaBorie                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------|-----------------------|-------------------|----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saisie des données de base du                                                     | u proj                | et et des         | du projet et des hypothèses à simuler                          |                                                   | S10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • Équipement                                                                      |                       |                   | <ul> <li>Tarifs sélectionnés</li> </ul>                        |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1) Définition du type decontrat (Hexagone)                                        | (auc                  | 1                 | Tarif                                                          | Nouvelle<br>C. T2007                              | The state of the s |
| Nouvelle centrale, contrat Type 2007.NC                                           |                       | Ħ                 | actualisé pour 2007                                            | 2 Tarifs                                          | Hydro-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Centrale existante sous contrat Type 1997                                         |                       |                   | part équipement concerné                                       | 100%                                              | calculé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Centrale existante, nouveau contrat Type 2001.CE                                  | Е                     |                   | Prix hiver                                                     | 11,830                                            | ct_€/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2) Ne pas cocher                                                                  |                       | X VRAI            | Prix été                                                       | 6,250                                             | ct_€/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3) Indiquer l'année en cours                                                      |                       | 2007              | Majoration investissement                                      |                                                   | ct_€/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4) Choix 1 ou 2 tarifs (été-hiver)                                                |                       | 7                 | Majoration qualité max                                         | 1,680                                             | ct_€/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Part contrat Type 97 existant : 2 Tarifs (été≠hiver) + primes</li> </ul> | iver) + μ             | orimes            | <ul> <li>Hydrologie</li> </ul>                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • Part Nile centrale ou nouv contrat ou augm de puissance                         | puissan               | e.                | 1) Situation de la prise d'eau                                 |                                                   | 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| choisir entre : 🔘 1Tarif (été=hiver) 🌘 2Ta                                        | ② 2Tarifs (été≠hiver) | liver)            | Nom du cours d'eau <b>Cours = Vi</b>                           | Vienne                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5) Description usine                                                              |                       |                   | Surface du BV à la prise d'eau                                 | Sbv = 444                                         | 444 km <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nom usine ou site : Moulin de La Borie                                            |                       |                   | 2) Période de la série chronologique hydrologique              | se hydrologique                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INACTIF                                                                           | Nouvelle<br>usine     |                   | 1ère année de la série hydro                                   | AnDeb = 1969                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hauteur de chute brute                                                            | 7                     | ε                 | dernière année de la série hydro                               | AnFin = 2007                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hauteur de chute nette Hn                                                         | 2,3                   | ε                 | 3) Station HYDRO de référence utilisée                         | lisée                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Débit turbiné mini                                                                | 1,5                   | m <sup>3</sup> /s | Nom de la station Peyrelevade                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Débit turbiné maxi                                                                | 9'9                   | m <sup>3</sup> /s | Nom du cours d'eau jaugé <mark>Vienne</mark>                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Débit réservé hiver                                                               | 1,25                  | m <sup>3</sup> /s | Code HYDRO de la station C                                     | CodeH = <b>L001</b>                               | L0010610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Débit réservé été                                                                 | 1,25                  | m <sup>3</sup> /s | Surface du BV à la station Hydro                               | $SbvH = 58,5 \text{ km}^2$                        | km <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Autres débits non turbinables                                                     |                       | m³/s              | 4) Reconstitution de l'hydrologie à la prise d'eau             | la prise d'eau                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Puissance brute installée 1                                                       | 129                   | kW calculé        | Simple rapport de BV avec station Hydro                        | Rapport de BV:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Part ancien/futur                                                                 | 100%                  | % calculé         | Rapport de BV puissance 0,8                                    | ıcun rapport de BV appliqué                       | appliqué                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Rendement moyen global                                                            | %0'02                 |                   | Coefficient choisi par vous-même ->                            | RapBV =                                           | 1,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Puissance max fournie                                                             | 104                   | kW calculé        | Reconstitution plus complexe                                   | Résultat : module ≈ 9,2 m3/s                      | m3/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Hauteur de chute</li> </ul>                                              |                       |                   | <ul> <li>Débit max turbiné</li> </ul>                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Voulez-vous calculer la chute véritable en fonction du débit                      | on du dé              | bit ?             | Voulez-vous indexer le débit max turbiné à la hauteur de chute | iné à la hauteur de                               | chute ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ○ NON, chute = Hn ● OUI, chute = f(Q,Hn)                                          |                       | 7                 | ● NON, Qmax = Qéquipement ○ OL                                 | OUI, Qmax = f(H chute réelle)                     | éelle) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • Sécurité : débit d'arrêt de la cer                                              | centrale              | 80                | m <sup>3</sup> /s Developper o                                 | Developper contact: benoit.teyssendier@wanadoo.fr | r@wanadoo.fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                   |                       |                   |                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



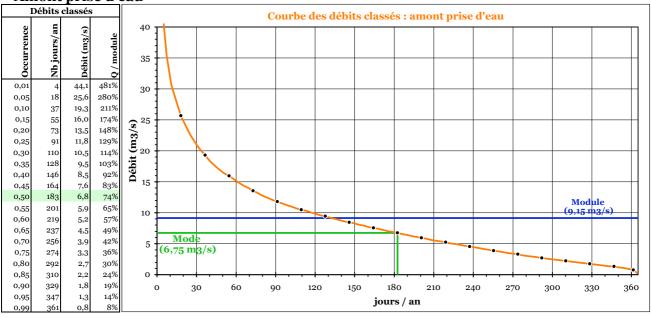
# Hydrologie comparée : prise d'eau et tronçon court circuité

Logiciel NewPCH v2.1 ß5dev∂

Moulin de La Borie Scénario:

S10



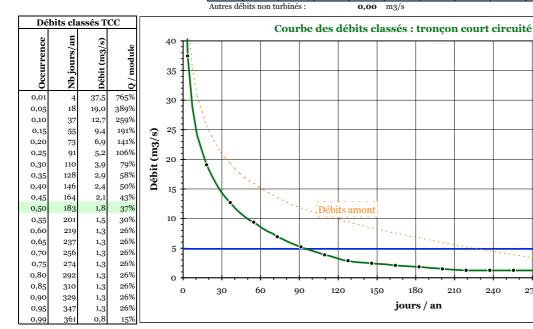

Site : Vienne à Moulin de La Borie (surface BV = 444 km2)

Station HYDRO choisie pour la reconstitution : Reconstitution complexe (voir rapport)

Formule appliquée : Reconstitution complexe (voir rapport)

Période prise en compte pour l'analyse hydrologique : 1969 à 2007 (39 années valides)

• Amont prise d'eau




## • Secteur court circuité

Débit turbiné maxi : 6,6 m3/s Débit turbiné mini :

1,5 m3/s

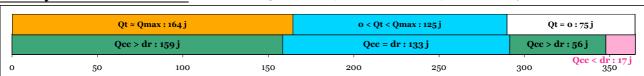
Débit réservé été & hiver (m3/s) : jan fév mars mai juin juil aoû oct nov déc 1,25



## • Analyse des situations

<u>légende :</u>

Qt = débit turbiné


Qcc = débit du tronçon court circuité

ModuleTCC (4.9 m3/s)

330

360

300





Usine hydroélectrique : Moulin de La Borie

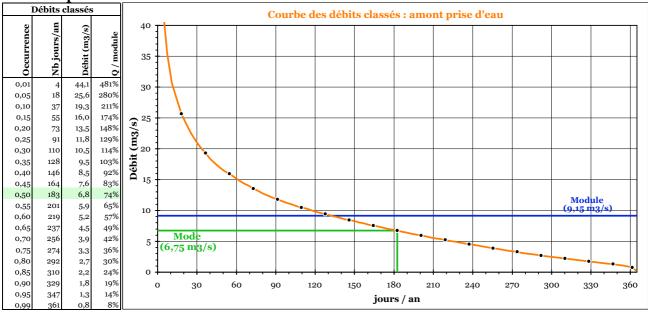
**S10** Équipement testé : Chute nette: 2,3 Rendement: 0,70 Débit turbiné maxi: 6,6 m3/s M Débit turbiné mini : m3/s jan fév mars avr mai iuin juil aoû oct 1,5 Débit réservé été & hiver: 1,3 & 1,3 m3/s 1,3 Hydro-m Autres débits non turbinés : Calcul sur 39 ans Rappel: Station HYDRO choisie pour la reconstitution: Reconstitution complexe (voir rapport) Moyenne Débits turbinés (moyennes mensuelles en m³/s) - il intègre les contraintes liées à la ressource (hydrologie mesurée) et à l'équipement testé février 6,0 mar avril mai 5,3 juin 4.0 juillet août 1,3 septembre octobre novembre 4,3 5,7 Movenne annuelle 5,5 2,3 4,3 8, Moy été (avr-oct) 3,3 Moy hiver (nov-mars) 5,6 Débits non turbinés du secteur court-circuité : débits déversants + débit réservé (moyennes mensuelles en m³/s) février mar avril mai juin 2,8 juillet août 1,7 septembre 2,0 octobre novembro 4.9 7,7 Moyenne annuelle 4,9 0,1,0 0,1,0 0,4,7,8 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 0,5,0 Moy hiver (nov-mars) Nombre de jours ... nb jours turbinés 141 55 nb jours turb Qmax 164 4 4 69 38 0 nb j. Qtronçon cc < dr 88 141 141 145 195 195 1135 1130 1147 1163 1163 117 117 117 118 118 118 118 nb j. Qtronçon cc = dr 133

S10 Équipement testé: Tarif électricité : Nouvelle centrale (Hexagone), 2 tarifs (été≠hiver), année 2007 Rendement: 0,70 Prix été : 6.250 ct €/kWh Résultat (prime au tarif 2001 Nouvelle Centrale): M Débit turbiné maxi : 6,6 ct €/kWh ct €/kWh m3/s Majoration qualité maxi : 1.680 Majoration qualité calculée = 93.8% soit 1,577 Débit turbiné mini : 1,5 m3/s Débit réservé été & hiver: 1,3 & 1,3 m3/s oct 1,3 nov déc 1,3 1,3 Hydro-m Autres débits non turbinés : Calcul sur 39 ans 0,0 m3/s Rappel : Station HYDRO choisie pour la reconstitution : Reconstitution complexe (voir rapport) Productible total en MWh févrie mai juille 41 décembi Total Année nb valeurs total été (avr-oct) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) 300 (1933) total hiver (nov-mars) Productible en 1000 € (majoration qualité non comprise) févrie 5,9 avri 3,4 mai juille octobi Total Année total été (avr-oct) otal hiver (nov-mars) Prix moyen du kWh annuel réalisé hors majoration qualité (ct €/kWh) 8,96 8,77 8,77 9,46 9,46 9,46 9,49 9,49 9,49 9,49 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 9,40 Calcul de la majoration qualité Total = 117 mois d'hiver (dec, jan, fev) Base de calcul : nb de mois pris en compte élimination des 10% = mois les plus mauvais mois les meilleurs (Mmo €/kWh % o à 20% 20 à 50 93,8% Base de calcul : prime Coefficient d'irrégularité I1 = 0.213 50 à 70% Régularité puissance Pmax (MWh) = 67 70 à 100% 0,245 Coeff Irr = Pmov(MWh) = 550,237 Pmin (MWh) = 42 on : prime = OUI => Prime Calculée = (1970) (1970) (1971) (1971) (1972) (1972) (1973) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1 Primes (hiver) en 1000 ( 4.0 Chiffre d'affaire total HT en 1000 € (toutes majorations incluses) 57.9 40.3 40.3 55.5 55.5 56.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 27.0 28.8 28.8 28.8 28.8 29.8 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

Usine hydroélectrique : Moulin de La Borie

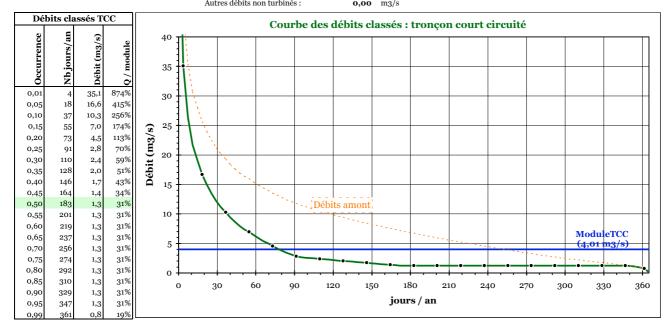
| Logiciel NewPCH v2.1 B5dev8                                                       |                        |            | Nom du fichier sauvegardé: NewPCHv2                            | NewPCHv21x_ LaBorie                               | П                   |
|-----------------------------------------------------------------------------------|------------------------|------------|----------------------------------------------------------------|---------------------------------------------------|---------------------|
| Saisie des données de base                                                        | ase du pro             | jet et de  | du projet et des hypothèses à simuler                          |                                                   | <b>88</b>           |
| • Équipement                                                                      |                        |            | <ul> <li>Tarifs sélectionnés</li> </ul>                        |                                                   |                     |
| 1) Définition du type decontrat                                                   | (Hexagone)             | 1          | Tarif                                                          | Nouvelle<br>C. T2007                              | July/               |
| Nouvelle centrale, contrat Type 2007.NC                                           | Į.                     | T          | actualisé pour 2007                                            | 2 Tarifs                                          | Hydro-m             |
| Centrale existante sous contrat Type 1997                                         | 266                    |            | part équipement concerné                                       | 100%                                              | calculé             |
| Centrale existante, nouveau contrat Type 20                                       | pe 2001.CE             |            | Prix hiver                                                     | 11,830                                            | ct_€/kWh            |
| 2) Ne pas cocher                                                                  |                        | FAUX       | Prix été                                                       | 6,250                                             | ct_€/kWh            |
| 3) Indiquer l'année en cours                                                      |                        | 2007       | Majoration investissement PAUX                                 |                                                   | ct_€/kWh            |
| 4) Choix 1 ou 2 tarifs (été-hiver)                                                |                        | 2          | Majoration qualité max                                         | 1,680                                             | ct_€/kWh            |
| <ul> <li>Part contrat Type 97 existant : 2 Tarifs (été≠hiver) + primes</li> </ul> | ifs (été≠hiver) +      | primes     | Hydrologie                                                     |                                                   |                     |
| • Part NIIe centrale ou nouv contrat ou augm de puissance :                       | augm de puissar        | nce :      | 1) Situation de la prise d'eau                                 |                                                   | 444                 |
| choisir entre : O 1Tarif (été=hiver)                                              | ② 2Tarifs (été≠hiver)  | ≠hiver)    | Nom du cours d'eau Cours = Vienne                              | <u>e</u>                                          |                     |
| 5) Description usine                                                              |                        |            | Surface du BV à la prise d'eau st                              | Sbv = 444                                         | 444 km <sup>2</sup> |
| Nom usine ou site: Moulin de La Borie                                             | a Borie                |            | 2) Période de la série chronologique hydrologique              | ydrologique                                       |                     |
| ZNI                                                                               | INACTIF Nouvelle usine |            | 1ère année de la série hydro AnDeb                             | de = 1969                                         |                     |
| Hauteur de chute brute                                                            | 2                      | m          | dernière année de la série hydro AnFin                         | in = 2007                                         |                     |
| Hauteur de chute nette Hn                                                         | 2,3                    | m          | 3) Station HYDRO de référence utilisée                         | 0                                                 |                     |
| Débit turbiné mini                                                                | 1,5                    | m³/s       | Nom de la station Peyrelevade                                  |                                                   |                     |
| Débit turbiné maxi                                                                | 6                      | m³/s       | Nom du cours d'eau jaugé <mark>Vienne</mark>                   |                                                   |                     |
| Débit réservé hiver                                                               | 1,25                   | m³/s       | Code HYDRO de la station CodeH =                               |                                                   | L0010610            |
| Débit réservé été                                                                 | 1,25                   | m³/s       | Surface du BV à la station Hydro <b>Sbv</b>                    | $SbvH = 58,5 \text{ km}^2$                        | km <sup>2</sup>     |
| Autres débits non turbinables                                                     |                        | m³/s       | 4) Reconstitution de l'hydrologie à la prise d'eau             | prise d'eau                                       | 4                   |
| Puissance brute installée                                                         | 177                    | kW calculé | Simple rapport de BV avec station Hydro                        | Rapport de BV:                                    |                     |
| Part ancien/futur                                                                 | 100%                   | % calculé  | Rapport de BV puissance 0,8                                    | ıcun rapport de BV appliqué                       | appliqué            |
| Rendement moyen global                                                            | %0'02                  |            | Coefficient choisi par vous-même ->                            | RapBV =                                           | 1,0000              |
| Puissance max fournie                                                             | 142                    | kW calculé | Reconstitution plus complexe                                   | Résultat : module ≈ 9,2 m3/s                      | m3/s                |
| • Hauteur de chute                                                                |                        |            | <ul> <li>Débit max turbiné</li> </ul>                          |                                                   |                     |
| Voulez-vous calculer la chute véritable en fonction du débit ?                    | en fonction du d       | ébit ?     | Voulez-vous indexer le débit max turbiné à la hauteur de chute | à la hauteur de                                   | chute ?             |
| $\bigcirc$ NON, chute = Hn $\bigcirc$ OUI, chute = f(Q,Hn)                        | = f(Q,Hn)              | 2          | NON, Qmax = Qéquipement OUI, Q                                 | ○ OUI, Qmax = f(H chute réelle)                   | éelle) 1            |
| • Sécurité : débit d'arrêt de la                                                  | e la centrale          | 80         | m³/s Developper conta                                          | Developper contact: benoit.teyssendier@wanadoo.fr | er@wanadoo.fr       |
|                                                                                   |                        |            |                                                                |                                                   |                     |




Moulin de La Borie Scénario :

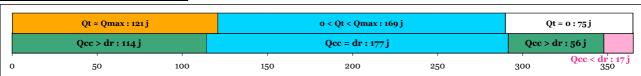


Site : Vienne à Moulin de La Borie (surface BV = 444 km2) Station HYDRO choisie pour la reconstitution : Reconstitution complexe (voir rapport) Formule appliquée : Reconstitution complexe (voir rapport)


Période prise en compte pour l'analyse hydrologique : 1969 à 2007 (39 années valides)

## • Amont prise d'eau




#### Secteur court circuité

Débit turbiné maxi : Débit turbiné mini : 1,5 m3/s Débit réservé été & hiver (m3/s) : fév mars avr mai juin juil aoû oct déc 1,25



## • Analyse des situations

<u>légende</u>: Ot = débit turbiné Qcc = débit du tronçon court circuité





**S8** 

Usine hydroélectrique : Moulin de La Borie

**S8** Équipement testé : Chute nette: 2,3 Rendement: 0,70 Débit turbiné maxi : 9,0 m3/s M Débit turbiné mini : m3/s jan fév mars avr mai iuin juil aoû oct nov 1,5 Débit réservé été & hiver: 1,3 & 1,3 m3/s Hydro-m Autres débits non turbinés : Calcul sur 39 ans Rappel: Station HYDRO choisie pour la reconstitution: Reconstitution complexe (voir rapport) Moyenne Débits turbinés (moyennes mensuelles en m³/s) - il intègre les contraintes liées à la ressource (hydrologie mesurée) et à l'équipement testé février 7,5 mar avril mai 6,3 juin 4,5 juillet août 1,4 septembre octobre 5,2 novembre 7,0 Movenne annuelle 5,1 5,3 3,0 2,3 3,7 4,1 1,9 6,4 8,8 3,6 3,6 3,5 5,9 Moy été (avr-oct) 3,8 Moy hiver (nov-mars) 7,0 Débits non turbinés du secteur court-circuité : débits déversants + débit réservé (moyennes mensuelles en m³/s) 6,3 6,2 6,2 1,5 2,9 2,9 7,8 1,3 3,8 4,7 7,1 12,5 0,0 février mar 5,1 1,9 1,6 3,2 avril 4,7 mai juin 2,2 juillet 1,9 août 1,6 septembre 1,9 octobre 2,8 novembro 4,0 6,3 Moyenne annuelle 4,0 Moy hiver (nov-mars) Nombre de jours ... nb jours turbinés nb jours turb Qmax 69 38 0 nb j. Qtronçon cc < dr 108 1177 1162 2000 234 123 1171 1171 1173 201 1173 200 200 200 200 240 nb j. Qtronçon cc = dr 177

**S8** Équipement testé: Tarif électricité : Nouvelle centrale (Hexagone), 2 tarifs (été≠hiver), année 2007 Rendement: 0,70 Prix été : 6.250 ct €/kWh Résultat (prime au tarif 2001 Nouvelle Centrale): M Débit turbiné maxi : ct €/kWh ct €/kWh m3/s Majoration qualité maxi : 1.680 Majoration qualité calculée = 85.9% soit 9.0 1.444 Débit turbiné mini : 1,5 m3/s Débit réservé été & hiver: 1,3 & 1,3 m3/s oct 1,3 nov déc 1,3 1,3 Hydro-m Autres débits non turbinés : Calcul sur 39 ans 0,0 m3/s Rappel : Station HYDRO choisie pour la reconstitution : Reconstitution complexe (voir rapport) Productible total en MWh févrie mai juille décemb Total Année 742 485 562 563 561 560 540 540 737 737 748 550 665 550 665 538 nb valeurs total été (avr-oct) total hiver (nov-mars) Productible en 1000 € (majoration qualité non comprise) févrie 7,4 avri mai juille octobi Total Année total été (avr-oct) otal hiver (nov-mars) Prix moyen du kWh annuel réalisé hors majoration qualité (ct €/kWh) 99,111
99,50
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90
99,90 Calcul de la majoration qualité Total = 117 mois d'hiver (dec, jan, fev) Base de calcul : nb de mois pris en compte élimination des 10% = mois les plus mauvais mois les meilleurs (Mmo €/kWh % o à 20% 20 à 50 Base de calcul : prime Coefficient d'irrégularité I1 = 0.243 50 à 70% Régularité puissance Pmax (MWh) = 85 70 à 100% 0,298 Coeff Irr = Pmov(MWh) = 600,284 Pmin (MWh) = 48on : prime = OUI => Prime Calculée = 0,0144 (1970) (1970) (1971) (1971) (1972) (1972) (1973) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1 Primes (hiver) en 1000 ( 4.5 Chiffre d'affaire total HT en 1000 € (toutes majorations incluses) 73,1 63,7 64,5 64,7 73,2 73,2 73,2 73,2 66,0 69,7 66,3 66,7 74,8 66,7 77,1 66,3 66,0 77,1 66,0 77,1 66,0 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 77,1 

Usine hydroélectrique : Moulin de La Borie

# **Annexe** 4

## **Estimatif des investissements**





### **Estimatif des investissements**

### Scénario S10

| Désignation                                              | Total €HT |
|----------------------------------------------------------|-----------|
| Arasement de la crête et étanchéité du barrage           | 15 000 €  |
| Terrassement du canal d'amenée                           | 24 000 €  |
| Reprise du vannage de garde et des murs                  | 12 000 €  |
| Amélioration des entrées d'eau                           | 14 000 €  |
| amélioration de la chambre d'eau                         | 9 000 €   |
| Déplacement de la turbine 2 dans une entrée d'eau dédiée | 8 000 €   |
| Modification et création des aspirateurs                 | 9 000 €   |
| Nettoyage du canal de fuite                              | 3 000 €   |
| TOTAL HT                                                 | 94 000 €  |





# Construction d'ouvrages de franchissement des poissons nécessitant le déplacement du barrage de la centrale hydroélectrique

«Moulin de la Borie»

Évaluation simplifiée des incidences NATURA 2000



# Sommaire

| - Description du projet (Cf. dossier projet)                                                                                                    |          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|
| 2- Localisation par rapport aux sites Natura 2000                                                                                               | 4        |  |  |  |  |  |  |
| 3- Incidences potentielles du projet sur les habitats ou espèces ayant conduit à la désignation des<br>sites Natura 2000 indiquées précédemment | s<br>6   |  |  |  |  |  |  |
| 3.1 - Quels sont les habitats ou espèces que votre projet est susceptible de déranger ou d'impacter ?                                           | 6        |  |  |  |  |  |  |
| 3.1.1 Habitats naturels                                                                                                                         | 6        |  |  |  |  |  |  |
| 3.1.2 Espèces animales                                                                                                                          | 10       |  |  |  |  |  |  |
| 3.1.3 Espèces végétales                                                                                                                         | 11       |  |  |  |  |  |  |
| 3.1.4 Habitats d'espèces                                                                                                                        | 11       |  |  |  |  |  |  |
| 3.2 Quelles sont les incidences potentielles du projet sur les habitats et espèces cités précédemment ?                                         | 13       |  |  |  |  |  |  |
| 3.3 En cas d'incidences du projet sur des habitats ou des espèces, moyens mis en œuvre pour éviter o réduire l'impact                           | ou<br>14 |  |  |  |  |  |  |
| 4- Conclusion                                                                                                                                   | 14       |  |  |  |  |  |  |



**ANNEXE 7** 



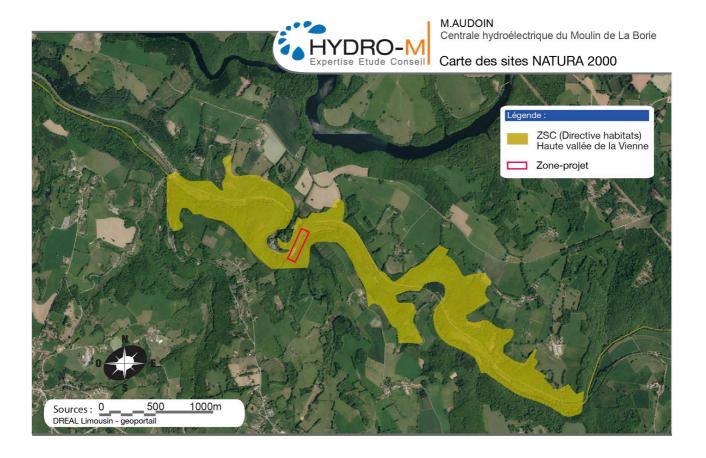
#### PRÉFECTURE DE LA HAUTE-VIENNE

### FORMULAIRE D'EVALUATION SIMPLIFIEE DES INCIDENCES NATURA 2000



Ce formulaire permet de répondre à la question préalable suivante : mon projet est-il susceptible d'avoir une incidence sur un site Natura 2000. Il permet, par une analyse succincte du projet et des enjeux, d'exclure toute incidence sur un site Natura 2000. Attention : si tel n'est pas le cas et qu'une incidence non négligeable est possible, une évaluation des incidences plus poussée doit être conduite.

### 1- Description du projet (Cf. dossier projet)


Pour rappel, le projet consiste à :

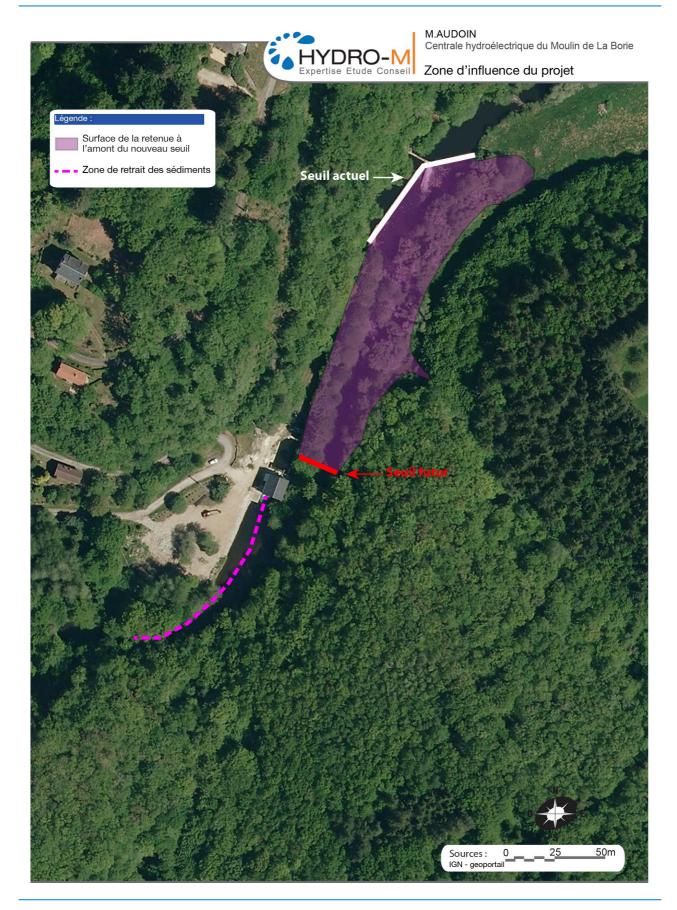
- effacer le seuil actuel.
- ▶ construire des ouvrages de franchissement des poissons nécessitant le déplacement du barrage à l'amont immédiat de l'usine.
- évacuer une partie des sédiments du lit de la Vienne, sur environ 7-8 m de large et 100 m de long, à l'aval de l'usine.



### 2- Localisation par rapport aux sites Natura 2000

| Site(s) Natura 2000 concerné(s) par le projet (cf. carte ci-après) |                                 |  |  |  |  |
|--------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Site FR7401148                                                     | Nom : Haute vallée de la Vienne |  |  |  |  |




### La zone d'influence du projet comprend :

- ▶ <u>le lit de la Vienne et ses berges</u>, entre le barrage actuel et le futur seuil, soit une longueur de 170 m, et une surface de 8 000 m²,
- ▶ <u>le lit de la Vienne</u>, à l'aval de la restitution des eaux turbinées sur une longueur d'environ 100 m et une largeur de 7-8 m

À l'amont du barrage actuel, la surface de la retenue ne sera pas modifiée.

Toute la zone d'influence du projet est incluse dans le site Natura 2000 «Haute vallée de la Vienne».







# 3- Incidences potentielles du projet sur les habitats ou espèces ayant conduit à la désignation des sites Natura 2000 indiquées précédemment

Tout projet peut avoir potentiellement un impact sur un site Natura 2000 dès lors qu'il se situe à proximité d'un habitat ou d'une espèce ayant conduit à la désignation du site.

Les documents d'objectifs (DOCOB) de chaque site Natura 2000 contiennent des cartographies d'habitats et d'espèces. Ils sont consultables sur le site internet de la DREAL Limousin à l'adresse suivante : http://www.limousin.developpement-durable.gouv.fr/fiches-cartes-docob-et-arretes-de-a113.htm

Le pétitionnaire peut également prendre contact avec l'animateur du site afin que celui-ci précise les enjeux écologiques présents à proximité de son projet.

Contact avec l'animateur : ☑ OUI ¹ ☐ NON

# 3.1 – Quels sont les habitats ou espèces que votre projet est susceptible de déranger ou d'impacter ?

### 3.1.1 Habitats naturels

L'ensemble des **habitats d'intérêt communautaire** recensé à proximité immédiate du projet est regroupé dans le tableau ci-dessous.

| HABITAT                                                                                                                    | Code<br>Natura 2000                  | Code<br>Corine Biotopes | Commentaires                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Hêtraies acidophiles atlantiques à sous-<br>bois à Ilex et parfois à Taxus (Quercion<br>robori-petraeae ou Ilici-Fagenion) | 9120                                 | 41.12                   | Présent par tâches dans la vallée, mais rarement en bordure de berge, et donc en dehors de la zone d'influence du projet               |
| Forêts alluviales à Alnus glutinosa et<br>Fraxinus excelsior (Alno- Padion,<br>Alnion incanae, Salicion albae)             | xinus excelsior (Alno- Padion, 91E0* |                         |                                                                                                                                        |
| Mégaphorbiaies hydrophiles d'ourlets<br>planitiaires et des étages montagnard à<br>alpin                                   | 6430                                 | 37.1                    | Présent rive gauche en amont<br>du barrage actuel, en dehors<br>de la zone d'influence du<br>projet                                    |
| Rivières des étages planitiaire à montagnard avec végétation du Ranunculion fluitantis et du Callitricho-Batrachion        | 3260                                 | 24.4                    | Présent dans la zone<br>d'influence du projet sous<br>forme de quelques herbiers à<br>callitriche et myriophylle<br>(surfaces ~ 20 m²) |

<sup>\*</sup> Habitat d'intérêt communautaire prioritaire



Dans la zone d'influence du projet, les berges entre le barrage actuel et le futur seuil sont boisées avec une prédominance de tilleuls et de charmes, en taillis ; l'aulne est également ponctuellement présent en bordure de l'eau. Rive gauche, en lisière de la zone d'influence et le long d'un chemin existant, on note la présence plus abondante de fougères aigle et de saules marsault.

La liste des espèces végétales recensées dans la zone d'influence du projet figure dans le tableau cidessous.

| Nom commun                  | Nom latin                                          | Berge RG | Berge RD | îlots |
|-----------------------------|----------------------------------------------------|----------|----------|-------|
| Strate arborée              |                                                    |          |          |       |
| Tilleul à petites feuilles  | Tilia cordata Mill., 1768                          | +        | +        |       |
| Charme                      | Carpinus betulus L., 1753                          | +        | +        |       |
| Érable sycomore             | Acer pseudoplatanus L., 1753                       |          | +        | +     |
| Aulne glutineux             | Alnus glutinosa (L.) Gaertn., 1790                 | +        | +        | +     |
| Sureau noir                 | Sambucus nigra L., 1753                            | +        |          | +     |
| Peuplier                    | Populus sp                                         | +        |          |       |
| Hêtre                       | Fagus sylvatica L., 1753                           | +        |          |       |
| Frêne commun                | Fraxinus excelsior L., 1753                        |          |          | +     |
| Strate arbustive            |                                                    |          |          |       |
| Noisetier                   | Corylus avellana L., 1753                          |          | +        |       |
| Aubépine à 1 style          | Crataegus monogyna Jacq., 1775                     |          | +        |       |
| Cornouiller sanguin         | Cornus sanguinea L., 1753                          |          | +        |       |
| Chèvrefeuille               | Lonicera periclymenum L., 1753                     | +        |          |       |
| Saule marsault              | Salix caprea L., 1753                              | +        |          |       |
| Strate herbacée             |                                                    |          |          |       |
| Ronce                       | Rubus sp                                           | +        | +        |       |
| Lierre grimpant             | Hedera helix L., 1753                              | +        | +        |       |
| Benoîte commune             | Geum urbanum L., 1753                              | +        | +        |       |
| Grande ortie                | Urtica dioica L., 1753                             | +        |          |       |
| Germandrée                  | Teucrium scorodonia L., 1753                       | +        | +        |       |
| Fougère femelle             | Athyrium filix-femina (L.) Roth, 1799              |          | +        | +     |
| Lierre terrestre            | Glechoma hederacea L., 1753                        |          | +        |       |
| Houx                        | Ilex aquifolium L., 1753                           |          | +        |       |
| Géranium Herbe à Robert     | Geranium robertianum L., 1753                      |          | +        |       |
| Euphorbe des bois           | Euphorbia amygdaloides L., 1753                    | +        |          |       |
| Sceau de Salomon multiflore | Polygonatum multiflorum (L.) All., 1785            | +        |          |       |
| Fougère aigle               | Pteridium aquilinum (L.) Kuhn, 1879                | +        |          |       |
| Lycopode                    | Lycopus europaeus L., 1753                         |          |          | +     |
| Iris faux acore             | Iris pseudacorus L., 1753                          |          |          | +     |
| Scrophulaire noueuse        | Scrophularia nodosa L., 1753                       |          |          | +     |
| Digitale pourpre            | Digitalis purpurea L., 1753                        | +        |          |       |
| Compagnon rouge             | Silene dioica (L.) Clairv., 1811                   | +        |          |       |
| Alliaire                    | Alliaria petiolata (M.Bieb.) Cavara & Grande, 1913 |          | +        |       |
| Luzule des bois             | Luzula sylvatica (Huds.) Gaudin, 1811              |          | +        |       |
| Canche cespiteuse           | Deschampsia cespitosa (L.) P.Beauv., 1812          | +        |          | +     |





La Vienne à l'aval du seuil existant



La Vienne à l'amont de l'usine hydroélectrique



Berge boisée rive droite



Berge boisée rive gauche



Faciès à fougères en lisière, rive gauche



Faciès à saules en lisière, rive gauche







Myriophylle

Faciès à callitriche et myriophylle



Zone de retrait des sédiments à l'aval de l'usine



### 3.1.2 Espèces animales

Parmi les **espèces d'intérêt communautaire** citées dans le Formulaire Standard de Données (FSD) du site Natura 2000, ou recensées dans le cadre du DOCOB, celles susceptibles d'être présentes dans la zone d'influence du projet sont listées ci-dessous.

Une prospection de terrain a été effectuée le 30/06/2015, en présence de Monsieur Cyril Laborde du PNR Millevaches pour la recherche de moules perlières. Par ailleurs, une liste des espèces recensées à proximité de la zone d'étude a été fournie par le PNR (cf liste en annexe).

La valeur patrimoniale indiquée pour chaque espèce est celle figurant dans le DOCOB.

| Espèces<br>d'intérêt communautaire                   | Valeur<br>patrimoniale | Présence/Absence<br>dans la zone d'influence du projet                                                                                                                                                 |
|------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loutre commune ( <i>Lutra lutra</i> )                | Moyenne                | Présente majoritairement sur le secteur amont du site Natura 2000 (Vienne amont Neuvic-Entier). Restes d'écrevisses visibles dans la zone d'influence (observation du 30/06/15), mais pas d'épreintes. |
|                                                      |                        | => Pas de présence permanente mais fréquentation probable                                                                                                                                              |
| Grand murin                                          | Forte                  | 1 gîte d'hibernation signalé sur la commune de St-Denis-<br>des-Murs.                                                                                                                                  |
| (Myotis myotis)                                      | Forte                  | => Fréquentation possible pour la chasse, mais habitat peu propice                                                                                                                                     |
| Murin de Bechstein                                   | Très forte             | 1 gîte d'hibernation signalé sur la commune de St-Denis-<br>des-Murs. Territoire de chasse composé de forêts et<br>habitats humides.                                                                   |
| (Myotis bechsteini)                                  |                        | => Fréquentation possible pour la chasse                                                                                                                                                               |
| Petit rhinolophe ( <i>Rhinolophus hipposideros</i> ) | Moyenne                | 1 gîte d'hibernation signalé sur la commune de St-Denis-<br>des-Murs. Présence de milieux humides recherchée sur<br>le territoire de chasse.                                                           |
| (cameropius impressueres)                            |                        | => Fréquentation possible pour la chasse                                                                                                                                                               |
| Sonneur à ventre jaune (Bombina variegata)  Moyenne  |                        | Observé sur le site Natura 2000, commune de St-Denisdes-Murs; population localisée près du bourg, à moins de 600 m du site Natura 2000. Occupe généralement des eaux stagnantes peu profondes.         |
|                                                      |                        | => Habitat non présent                                                                                                                                                                                 |
| Moule perlière                                       | TOTAL                  | Présente sur tout le cours de la Vienne en amont de Bujaleuf (± 5 km en amont de la zone projet).                                                                                                      |
| (Margaritifera margaritifera)                        | Très forte             | => Pas recensée sur la zone projet, suite à prospection du 30/06/2015 avec PNR Millevaches                                                                                                             |
| Bouvière (Rhodeus amarus)                            | -                      | Absente de tout le site Natura 2000                                                                                                                                                                    |
| Chabot                                               | Moyenne                | Présent uniquement à Bujaleuf. Non présent sur la station de suivi «l'Usine» à St-Denis-des-Murs.                                                                                                      |
| (Cottus gobio)                                       |                        | => Pas recensé sur la zone projet, suite à prospection par pêche électrique du 30/06/2015                                                                                                              |



| Ecaille chinée (Callimorpha quadripunctaria)* | Faible  | Observé uniquement à Tarnac et Peyrelevade, mais peut fréquenter un grand nombre de milieux humides ou xériques, y compris anthropisés.  => Potentiellement présent |
|-----------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lucane cerf-volant (Lucanus cervus)           | Moyenne | Habitat constitué de souches et de vieux arbres feuillus dépérissants.  => Potentiellement présent                                                                  |
| Damier de la Succise (Euphydryas aurinia)     | Moyenne | Habitat constitué de milieux ouverts humides. Plante hôte = succise.  => Habitat non présent                                                                        |

<sup>\*</sup> Espèce d'intérêt communautaire **prioritaire** 

### 3.1.3 Espèces végétales

Aucune **espèce végétale d'intérêt communautaire** n'est citée sur la fiche FSD du site Natura 2000. Dans le DOCOB, seules deux espèces sont répertoriées :

- ▶ Bruchie des Vosges (Bruchia vogesiaca) : au sein du site Natura 2000, quelques cm² observés sur un substrat de tourbe noire, au niveau des sources de la Vienne.
  - => Habitat non présent dans la zone d'influence du projet
- ▶ Flûteau nageant (*Luronium natans*) : non observé directement sur le site Natura 2000 lors de la cartographie des habitats en 2008, mais présence très probable.
  - => Non présente dans la zone d'influence du projet, suite à la prospection du 30/06/2015

### 3.1.4 Habitats d'espèces

L'habitat d'espèces, d'intérêt communautaire, intitulé « réseau hydrographique » s'étend sur un linéaire de près de 80 km, depuis les sources de la Vienne jusqu'à la limite aval du site Natura 2000. Il comprend le lit et les berges de la Vienne et quelques linéaires d'affluents (proches de la confluence avec la Vienne), ainsi que leurs ripisylves. Il couvre donc l'ensemble de la zone d'influence du projet.

Les huit espèces d'intérêt communautaire concernées par cet habitat sont les suivantes :

| Espèces d'intérêt communautaire                      | Présence/Absence<br>dans la zone d'influence du projet |
|------------------------------------------------------|--------------------------------------------------------|
| Loutre commune (Lutra lutra)                         | Fréquentation probable                                 |
| Moule perlière (Margaritifera margaritifera)         | Absence                                                |
| Chabot (Cottus gobio)                                | Absence                                                |
| Lamproie de Planer (Lampetra planeri)                | Absence                                                |
| Ecrevisse à pieds blancs (Austropotamobius pallipes) | Absence                                                |



| Cordulie à corps fin (Oxygastra curtisii) | Non recensé. Présence possible en dehors de la zone d'influence du projet (habitat favorable = retenues, plans d'eau) |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Agrion de Mercure (Coenagrion mercuriale) | Absence                                                                                                               |  |  |  |  |
| Flûteau nageant (Luronium natans)         | Absence                                                                                                               |  |  |  |  |

Un prélèvement d'invertébrés benthiques a été effectué le 30/06/2015, entre le barrage actuel et le futur seuil. Ce secteur est alimenté par le débit réservé de la centrale hydroélectrique. Les berges boisées et les fluctuations de surfaces mouillées dans ce tronçon sont peu favorables aux odonates citées précédemment. Seuls des adultes de l'espèce Calopteryx vierge (Calopteryx virgo) ont été observés sur des secteurs ensoleillés, près du barrage en rive gauche.

La liste des espèces recensées (cf annexe) confirme l'absence de larve d'odonates d'intérêt communautaire.

Par ailleurs, un inventaire piscicole de type qualitatif a été réalisé. Les espèces recensées sont les suivantes : truite fario, spirlin, ablette, goujon, barbeau.

Aucune frayère à salmonidés n'est présente sur la zone d'influence du projet. Une frayère potentielle à cyprinidés se trouve à l'aval immédiat du barrage existant, au niveau du faciès à callitriche.



Calopteryx vierge (femelle et mâle)



# 3.2 Quelles sont les incidences potentielles du projet sur les habitats et espèces cités précédemment?

| Types d'impacts potentiels                                                                               | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                          | Habitat naturel 3260: Rivières des étages planitiaire à montagnard avec végétation du Ranunculion fluitantis et du Callitricho-Batrachion. La création d'un faciès de retenue entre le barrage actuel et le futur seuil entraînera la disparition des qqs faciès à callitriche et myriophylle, soit ± 20 m².  => L'impact sur le site Natura 2000 sera négligeable car la surface concernée représente une part infime (< 0,01 %) de la surface totale de cet habitat (132 ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Destruction d'habitats naturels ou<br>d'habitats d'espèces                                               | Habitat d'espèces «Réseau hydrographique» : 8 espèces concernées. Cet habitat s'étend sur près de 80 km, depuis les sources de la Vienne jusqu'à la limite aval du site. Il comprend le lit et les berges de la Vienne.  La création d'un faciès de retenue entre le barrage existant et le futur seuil modifiera de façon permanente les caractéristiques de l'habitat actuel sur un linéaire de ± 170 m. Par ailleurs, l'enlèvement d'une partie des sédiments à l'aval de l'usine sur ± 100 m de longueur dégradera provisoirement cet habitat qui se reconstituera ensuite naturellement.  Dans les deux cas, l'habitat d'espèces «réseau hydrographique» sera maintenu.  => L'impact sur le site Natura 2000 sera négligeable car :  - le linéaire modifié représente une part infime (0,3 %) de la totalité de cet habitat (80 km)  - seule la loutre, parmi les espèces concernées, est potentiellement présente ; l'extension du faciès de retenue ne nuira pas à cette espèce (pas de catiche observée, maintien du milieu aquatique et de nourriture -écrevisse signal-) |
| Destruction d'espèces                                                                                    | Le projet n'entraînera aucune destruction d'espèce d'intérêt communautaire.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rejet d'eaux résiduaires dans le milieu naturel                                                          | Néant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Suppression de territoire de chasse par<br>déboisement ou défrichement (y<br>compris arrachage de haies) | Néant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dérangements en période de travaux (proximité de sites de nidification)                                  | Les espèces d'intérêt communautaire susceptibles d'être dérangées par les travaux sont la <b>loutre</b> et les <b>chauves-souris</b> . Cependant, aucun site de nidification de ces espèces n'a été recensé dans la zone d'influence du projet et leur activité est uniquement crépusculaire et nocturne, tandis que les travaux ne se dérouleront qu'en journée.  => L'impact des travaux sur les espèces du site Natura 2000 sera négligeable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Autres (à préciser)                                                                                      | Néant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



## 3.3 En cas d'incidences du projet sur des habitats ou des espèces, moyens mis en œuvre pour éviter ou réduire l'impact

Néant

### 4- Conclusion

Il est de la responsabilité du porteur de projet de conclure sur l'absence ou non d'incidences de son projet. A titre d'information, le projet est susceptible d'avoir une incidence lorsque :

- une surface relativement importante ou un milieu d'intérêt communautaire ou un habitat d'espèce est détruit ou dégradé à l'échelle du site Natura 2000,
- une espèce d'intérêt communautaire est détruite ou perturbée dans la réalisation de son cycle vital.

Le projet est-il susceptible d'avoir une incidence ?

Le 08 juillet 2015

- ☑ NON : ce formulaire, accompagné de ses pièces, est joint à la demande d'autorisation ou à la déclaration, et remis au service instructeur.
- □ OUI : l'évaluation d'incidences doit se poursuivre. Un dossier plus poussé doit être réalisé. Ce dossier sera joint à la demande d'autorisation ou à la déclaration, et remis au service instructeur.

Date:

Signature du pétitionnaire :

Michel AUDOIN

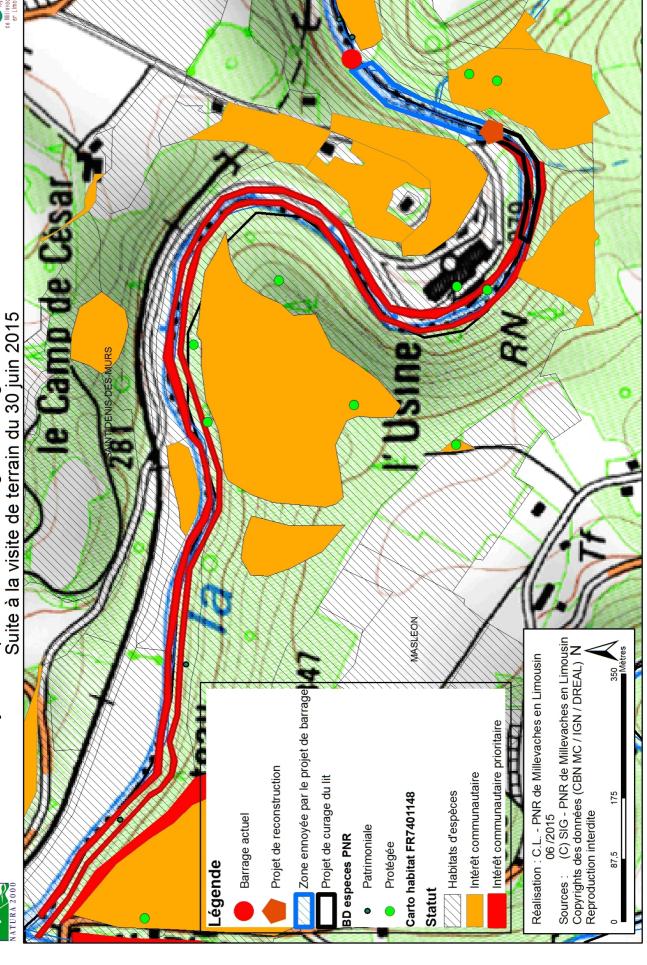


## Table des Annexes

ANNEXE 1 : Cartographie des habitats d'intérêt communautaire fournie par le PNR des Millevaches

ANNEXE 2 : Liste des espèces fournies par le PNR des Millevaches

ANNEXE 3 : Liste des espèces d'invertébrés aquatiques (prélèvement du 30/06/2015)


16 sur 21



ANNEXE 1 : Cartographie des habitats d'intérêt communautaire fournie par le PNR des Millevaches









ANNEXE 2 : Liste des espèces fournies par le PNR des Millevaches

| NOM LATIN                            | NOM HOUSE            | CDOUDE     | CTATILT      | DATE       | ALITELIA       | COURCE | PENADOUE                                           | 112000 |                      |                                                   |
|--------------------------------------|----------------------|------------|--------------|------------|----------------|--------|----------------------------------------------------|--------|----------------------|---------------------------------------------------|
| NOM_LATIN                            | NOM_USUEL            | GROUPE     |              | DATE_      | AUTEUR         |        | REMARQUE                                           |        | Annee Protocole nb_i |                                                   |
| Myotis myotis                        | Grand murin          | Chirotpere |              | 20/02/1999 |                | GMHL   | Colonie                                            | IC DH  | 1999 EXBD_01         | 1 0,0000000000 l'Usine                            |
| Myotis myotis                        | Grand murin          | Chirotpere |              | 26/03/1986 |                | GMHL   | Colonie                                            | IC DH  | 1986 EXBD_01         | 2 0,0000000000 l'Usine                            |
| Myotis myotis                        | Grand murin          | Chirotpere |              | 25/01/1987 |                | GMHL   | Colonie                                            | IC DH  | 1987 EXBD_01         | 3 0,00000000000 l'Usine                           |
| Myotis myotis                        | Grand murin          | Chirotpere |              | 29/03/1987 |                | GMHL   | Colonie                                            | IC DH  | 1987 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis myotis                        | Grand murin          | Chirotpere | PN           | 01/04/1987 | GMHL           | GMHL   | Colonie                                            | IC DH  | 1987 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis myotis                        | Grand murin          | Chirotpere | PN           | 27/01/1988 | GMHL           | GMHL   | Colonie                                            | IC DH  | 1988 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis myotis                        | Grand murin          | Chirotpere | PN           | 09/03/1988 | GMHL           | GMHL   | Colonie                                            | IC DH  | 1988 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis myotis                        | Grand murin          | Chirotpere | PN           | 12/10/1988 | GMHL           | GMHL   | Colonie                                            | IC DH  | 1988 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis myotis                        | Grand murin          | Chirotpere | PN           | 15/03/1989 | GMHL           | GMHL   | Colonie                                            | IC DH  | 1989 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Ischnura elegans                     | Ichnure elegante     | Insecte    |              | 30/06/2011 | Lucas Michelot | SLO    | Male VOL                                           |        | 2011                 | 1 0,00000000000 Le Pont du Rateau                 |
| Ischnura elegans                     | Ichnure elegante     | Insecte    |              | 30/06/2011 | Lucas Michelot | SLO    | Male VOL                                           |        | 2011                 | 1 0,00000000000 Le Pont du Rateau                 |
| Ischnura elegans                     | Ichnure elegante     | Insecte    |              | 30/06/2011 | Lucas Michelot | SLO    | Male VOL                                           |        | 2011                 | 1 0,00000000000 Le Pont du Rateau                 |
| Thalictrella thalictroides L.        | Isopyre faux pygamon | Botanique  | Patrimoniale | 2006       | CBN MC         | PNR ML |                                                    |        | 2006 CBN 01          | 1 0,0000000000                                    |
| Thalictrella thalictroides L.        | Isopyre faux pygamon | Botanique  | Patrimoniale | 2006       | CBN MC         | PNR ML |                                                    |        | 2006 CBN 01          | 1 0,0000000000                                    |
| Podarcis muralis (Laurenti 1768)     | Lezard des murailles | •          | PN           | 30/05/2003 |                | GMHL   |                                                    |        | 2003 EXBD 01         | 2 0,0000000000 Pont du Rateau                     |
| Podarcis muralis (Laurenti 1768)     | Lezard des murailles | Reptile    | PN           | 31/03/1999 |                | GMHL   |                                                    |        | 1999 EXBD 01         | 1 0,00000000000 la Gare                           |
| Podarcis muralis (Laurenti 1768)     | Lezard des murailles | •          | PN           | 30/03/1999 |                | GMHL   |                                                    |        | 1999 EXBD 01         | 1 0,0000000000 Villejoubert                       |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Couple VOL Dans les prairies seches bordant la Vi* |        | 2011                 | 10 0,0000000000 Le Pont du Rateau                 |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Male VOL Nombreux môles territoriaux               |        | 2011                 | 9 0,0000000000 La Croix de l'Arbre                |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Femelle VOL                                        |        | 2011                 | 2 0,0000000000 L'Usine                            |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Couple VOL Dans les prairies seches bordant la Vi* |        | 2011                 | 10 0.00000000000 Le Pont du Rateau                |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Male VOL Nombreux môles territoriaux               |        | 2011                 | 9 0,0000000000 La Croix de l'Arbre                |
|                                      | ·                    |            |              |            | Lucas Michelot | SLO    | Femelle VOL                                        |        | 2011                 | 2 0,0000000000 L'Usine                            |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            |                |        |                                                    |        |                      | •                                                 |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Couple VOL Dans les prairies sèches bordant la Vi* |        | 2011                 | 10 0,00000000000 Le Pont du Rateau                |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Male VOL Nombreux môles territoriaux               |        | 2011                 | 9 0,0000000000 La Croix de l'Arbre                |
| Libellula depressa                   | Libellule deprimee   | Insecte    |              |            | Lucas Michelot | SLO    | Femelle VOL                                        |        | 2011                 | 2 0,0000000000 L'Usine                            |
| Myotis alcathoe                      | Murin d' alcathoÚ    | Chirotpere |              | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   | 10.511 | 2010 CHI_01          | 1 0,0000000000                                    |
| Myotis bechsteini                    | Murin de Bechstein   | Chirotpere |              | 06/02/1991 |                | GMHL   | Colonie                                            | IC DH  | 1991 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis bechsteini                    | Murin de Bechstein   | Chirotpere |              | 20/02/1999 |                | GMHL   | Colonie                                            | IC DH  | 1999 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis bechsteini                    | Murin de Bechstein   | Chirotpere |              | 04/02/2001 |                | GMHL   | Colonie                                            | IC DH  | 2001 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis bechsteini                    | Murin de Bechstein   | Chirotpere |              | 22/02/1989 |                | GMHL   | Colonie                                            | IC DH  | 1989 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis bechsteini                    | Murin de Bechstein   | Chirotpere |              | 15/03/1989 |                | GMHL   | Colonie                                            | IC DH  | 1989 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis daubentoni                    | Murin de Daubenton   | Chirotpere | PN           | 27/01/1988 |                | GMHL   | Colonie                                            |        | 1988 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis daubentoni                    | Murin de Daubenton   | Chirotpere | PN           | 09/03/1988 |                | GMHL   | Colonie                                            |        | 1988 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis daubentoni                    | Murin de Daubenton   | Chirotpere | PN           | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI_01          | 1 0,0000000000                                    |
| Myotis daubentoni                    | Murin de Daubenton   | Chirotpere | PN           | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI_01          | 1 0,0000000000                                    |
| Myotis daubentoni                    | Murin de Daubenton   | Chirotpere | PN           | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI_01          | 1 0,00000000000                                   |
| Myotis daubentoni                    | Murin de Daubenton   | Chirotpere | PN           | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI_01          | 1 0,0000000000                                    |
| Myotis nattereri                     | Murin de Natterer    | Chirotpere | PN           | 06/02/1991 |                | GMHL   | Colonie                                            |        | 1991 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis nattereri                     | Murin de Natterer    | Chirotpere | PN           | 19/02/1994 |                | GMHL   | Colonie                                            |        | 1994 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis nattereri                     | Murin de Natterer    | Chirotpere |              | 20/02/1999 |                | GMHL   | Colonie                                            |        | 1999 EXBD 01         | 1 0,00000000000 l'Usine                           |
| Myotis nattereri                     | Murin de Natterer    | Chirotpere | PN           | 25/01/1987 |                | GMHL   | Colonie                                            |        | 1987 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis nattereri                     | Murin de Natterer    | Chirotpere | PN           | 27/01/1988 |                | GMHL   | Colonie                                            |        | 1988 EXBD 01         | 1 0,00000000000 l'Usine                           |
| Myotis nattereri                     | Murin de Natterer    | Chirotpere |              | 17/01/1990 |                | GMHL   | Colonie                                            |        | 1990 EXBD_01         | 1 0,0000000000 l'Usine                            |
| Myotis nattereri                     | Murin de Natterer    | Chirotpere |              | 06/02/1991 |                | GMHL   | Colonie                                            |        | 1991 EXBD 01         | 1 0,00000000000 l'Usine                           |
| Myotis natereri                      | Murin de Natterer    | Chirotpere |              | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI 01          | 1 0,0000000000                                    |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 19/02/1994 |                | GMHL   | Colonie                                            |        | 1994 EXBD 01         | 2 0,0000000000 l'Usine                            |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 20/02/1999 |                | GMHL   | Colonie                                            |        | 1999 EXBD_01         | 1 0,0000000000 l'Usine                            |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 04/02/2001 |                | GMHL   | Colonie                                            |        | 2001 EXBD_01         | 1 0,0000000000 l'Usine                            |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 26/03/1986 |                | GMHL   | Colonie                                            |        | 1986 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 25/01/1987 |                | GMHL   | Colonie                                            |        | 1987 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 27/01/1988 |                | GMHL   | Colonie                                            |        | 1988 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis mystacinus  Myotis mystacinus | Murin Ó moustaches   | Chirotpere |              | 09/03/1988 |                | GMHL   | Colonie                                            |        | 1988 EXBD_01         | 2 0,00000000000 l'Usine                           |
| Myotis mystacinus  Myotis mystacinus | Murin Ó moustaches   | Chirotpere |              | 25/01/1989 |                | GMHL   | Colonie                                            |        | 1989 EXBD_01         | 1 0,00000000000 l'Usine                           |
| •                                    | Murin Ó moustaches   | Chirotpere |              | 17/01/1989 |                | GMHL   | Colonie                                            |        | 1990 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Myotis mystacinus                    | Murin Ó moustaches   | •          |              |            |                |        | Colonie                                            |        |                      | •                                                 |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 06/02/1991 |                | GMHL   | Colonie                                            |        | 1991 EXBD_01         | 1 0,0000000000 l'Usine                            |
| Myotis mystacinus                    |                      | Chirotpere |              | 25/02/1996 |                | GMHL   |                                                    |        | 1996 EXBD_01         | 1 0,0000000000 SAINT-DENIS-DES-MURS               |
| Myotis mystacinus                    | Murin Ó moustaches   | Chirotpere |              | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI_01          | 1 0,00000000000<br>F0 0 0000000000 Pont du Patoau |
| Nyctalus noctula                     | Noctule commune      | Chirotpere |              | 03/07/1985 |                | GMHL   | Colonie                                            |        | 1985 EXBD_01         | 50 0,0000000000 Pont du Rateau                    |
| Nyctalus noctula                     | Noctule commune      | Chirotpere |              | 03/07/1985 |                | GMHL   | Colonie                                            |        | 1985 EXBD_01         | 50 0,000000000 Pont du Rateau                     |
| Nyctalus noctula                     | Noctule commune      | Chirotpere |              | 03/08/1985 |                | GMHL   |                                                    |        | 1985 EXBD_01         | 1 0,000000000 Pont du Rateau                      |
| Nyctalus noctula                     | Noctule commune      | Chirotpere |              | 03/08/1985 |                | GMHL   |                                                    |        | 1985 EXBD_01         | 1 0,000000000 Pont du Rateau                      |
| Nyctalus noctula                     | Noctule commune      | Chirotpere |              | 08/07/1988 |                | GMHL   | Colonie                                            |        | _                    | 100 0,00000000000 le Bourg                        |
| Nyctalus noctula                     | Noctule commune      | Chirotpere |              | 18/07/1988 |                | GMHL   | Colonie                                            |        | _                    | 115 0,0000000000 le Bourg                         |
| Nyctalus noctula                     | Noctule commune      | Chirotpere | PN           | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI_01          | 1 0,0000000000                                    |
|                                      | Ombre commun         | Poisson    |              | 28/09/2010 | ONEMA          | ONEMA  |                                                    |        | 2010 POI_01          | 8 0,0000000000                                    |
| Plecotus austriacus                  | Oreillard gris       | Chirotpere | PN           | 2010       | M. Barataud    | GMHL   | Indiv. en chasse                                   |        | 2010 CHI_01          | 1 0,0000000000                                    |
| Plecotus sp.                         | Oreillard sp         | Chirotpere | PN           | 25/01/1987 |                | GMHL   | Colonie                                            |        | 1987 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Plecotus sp.                         | Oreillard sp         | Chirotpere | PN           | 22/02/1989 |                | GMHL   | Colonie                                            |        | 1989 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Plecotus sp.                         | Oreillard sp         | Chirotpere | PN           | 17/01/1990 |                | GMHL   | Colonie                                            |        | 1990 EXBD_01         | 1 0,00000000000 l'Usine                           |
| Plecotus sp.                         | Oreillard sp         | Chirotpere | PN           | 17/01/1990 |                | GMHL   | Colonie                                            |        | 1990 EXBD_01         | 1 0,0000000000 l'Usine                            |
|                                      |                      | ,          |              |            |                |        |                                                    |        | _                    |                                                   |

| Plecotus sp.              | Oreillard sp                  | Chirotpere PN | 19/02/1994 GMHL           | GMHL  | Colonie                          |        | 1994 EXBD_01 | 1 0,00000000000 SAINT-DENIS-DES-MURS                            |
|---------------------------|-------------------------------|---------------|---------------------------|-------|----------------------------------|--------|--------------|-----------------------------------------------------------------|
| Orthetrum brunneum        | Orthetrum brun                | Insecte       | 08/06/2011 Lucas Michelot | SLO   | Male VOL Deux môles territoriaux |        | 2011         | 2 0,00000000000 La Croix de l'Arbre                             |
| Orthetrum brunneum        | Orthetrum brun                | Insecte       | 08/06/2011 Lucas Michelot | SLO   | Male VOL Deux môles territoriaux |        | 2011         | 2 0,00000000000 La Croix de l'Arbre                             |
| Orthetrum brunneum        | Orthetrum brun                | Insecte       | 08/06/2011 Lucas Michelot | SLO   | Male VOL Deux môles territoriaux |        | 2011         | 2 0,00000000000 La Croix de l'Arbre                             |
|                           | Perche                        | Poisson       | 28/09/2010 ONEMA          | ONEMA | 1                                |        | 2010 POI 01  | 9 0,0000000000                                                  |
| Rhinolophus hipposideros  | Petit rhinolophe              | Chirotpere PN | 27/03/2004 GMHL           | GMHL  | Colonie                          | IC DH  | 2004 EXBD_01 | 1 0,00000000000 l'Usine                                         |
| Rhinolophus hipposideros  | Petit rhinolophe              | Chirotpere PN | 07/09/1986 GMHL           | GMHL  | Colonie                          | IC DH  | 1986 EXBD 01 | 1 0,00000000000 l'Usine                                         |
| Rhinolophus hipposideros  | Petit rhinolophe              | Chirotpere PN | 10/09/1986 GMHL           | GMHL  | Colonie                          | IC DH  | 1986 EXBD_01 | 1 0,00000000000 l'Usine                                         |
| Rhinolophus hipposideros  | Petit rhinolophe              | Chirotpere PN | 27/01/1988 GMHL           | GMHL  | Colonie                          | IC DH  | 1988 EXBD 01 | 1 0,00000000000 l'Usine                                         |
| Rhinolophus hipposideros  | Petit rhinolophe              | Chirotpere PN | 12/10/1988 GMHL           | GMHL  | Colonie                          | IC DH  | 1988 EXBD_01 | 1 0,00000000000 l'Usine                                         |
| Rhinolophus hipposideros  | Petit rhinolophe              | Chirotpere PN | 25/02/1996 GMHL           | GMHL  | Colonie                          | IC DH  | 1996 EXBD_01 | 1 0,00000000000 SAINT-DENIS-DES-MURS                            |
| Rhinolophus hipposideros  | Petit rhinolophe              | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 | IC DH  | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 08/06/2011 Lucas Michelot | SLO   | VOL Un individu isolÚ            |        | 2011         | 1 0,00000000000 La Croix de l'Arbre                             |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 20/06/2011 Lucas Michelot | SLO   | Couple VOL                       |        | 2011         | 30 0,00000000000 L'Usine                                        |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 24/06/2011 Lucas Michelot | SLO   | Male VOL                         |        | 2011         | 2 0,00000000000 L'Usine                                         |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 30/06/2011 Lucas Michelot | SLO   | Male VOL                         |        | 2011         | 1 0,00000000000 Le Pont du Rateau                               |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 08/06/2011 Lucas Michelot | SLO   | VOL Un individu isolÚ            |        | 2011         | 1 0,00000000000 La Croix de l'Arbre                             |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 20/06/2011 Lucas Michelot | SLO   | Couple VOL                       |        | 2011         | 30 0,00000000000 L'Usine                                        |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 24/06/2011 Lucas Michelot | SLO   | Male VOL                         |        | 2011         | 2 0,00000000000 L'Usine                                         |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 30/06/2011 Lucas Michelot | SLO   | Male VOL                         |        | 2011         | 1 0,00000000000 Le Pont du Rateau                               |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 08/06/2011 Lucas Michelot | SLO   | VOL Un individu isolÚ            |        | 2011         | 1 0,00000000000 La Croix de l'Arbre                             |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 20/06/2011 Lucas Michelot | SLO   | Couple VOL                       |        | 2011         | 30 0,0000000000 L'Usine                                         |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 24/06/2011 Lucas Michelot | SLO   | Male VOL                         |        | 2011         | 2 0,0000000000 L'Usine                                          |
| Pyrrhosoma nymphula       | Petite nymphe au corps de feu | Insecte       | 30/06/2011 Lucas Michelot | SLO   | Male VOL                         |        | 2011         | 1 0,00000000000 Le Pont du Rateau                               |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,00000000000                                                 |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus pipistrellus | Pipistrelle commune           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus kuhli        | Pipistrelle de kuhl           | Chirotpere PN | 2010 M. Barataud          | GMHL  | Indiv. en chasse                 |        | 2010 CHI_01  | 1 0,0000000000                                                  |
| Pipistrellus Sp.          | Pipistrelle Sp.               | Chirotpere PN | 02/07/2010 Gaelle CAUBLOT | GMHL  | Colonie                          | 10.511 | 2010 CHI_02  | 10 0,00000000000 1 manoir vont bientôt refaire les combles (con |
| Osmoderma eremita         | Pique prune                   | Insecte PN    | 18/08/2011 Romain CHAMBOR |       | macrorestes                      | IC DH  | 2011         | 10 0,0000000000 Les Rivailles                                   |
| Dambing varients          | Rotengle                      | Poisson       | 28/09/2010 ONEMA          | ONEMA |                                  | 16.511 | 2010 POI_01  | 6 0,00000000000000000000000000000000000                         |
| Bombina variegata         | Sonneur a ventre jaune        | Amphibien PN  | 15/07/2007 GMHL           | GMHL  |                                  | IC DH  | 2007 EXBD_01 | 2 0,00000000000 SAINT-DENIS-DES-MURS                            |

**SOURCE: PNR des Millevaches** 



ANNEXE 3 : Liste des espèces d'invertébrés aquatiques (prélèvement du 30/06/2015)

| Vienne – Secteur en débit réservé - 30/06/2015                          | Abondance des espèces       |
|-------------------------------------------------------------------------|-----------------------------|
| EPHÉMÉROPTÈRES -                                                        |                             |
| Baetidae -                                                              |                             |
| Alainites muticus **                                                    | +                           |
| Baetis rhodani o*                                                       | ++++                        |
| B. fuscatus *o                                                          | +++                         |
| Ephemerellidae -                                                        |                             |
| Serratella ignita *o                                                    | +++                         |
| Leptophlebiidae -                                                       |                             |
| Habrophlebia fusca **                                                   | (+)                         |
| PLÉCOPTÈRES -                                                           |                             |
| Leuctridae -                                                            |                             |
| Leuctra fusca **                                                        | +                           |
| L. hippopus **                                                          | +                           |
| ODONATES -                                                              |                             |
| Calopterygidae –                                                        |                             |
| Calopteryx virgo *** (Larves absentes dans nos prélèvements aquatiques) | observé sous forme d'adulte |
| TRICHOPTÈRES -                                                          |                             |
| Rhyacophilidae -                                                        |                             |
| Rhyacophila dorsalis *o                                                 | ++                          |
| R. cf. munda / jl, **                                                   | +                           |
| R. septentrionalis **                                                   | +                           |
| Hydroptilidae -                                                         |                             |
| Oxyethira flavicornis **                                                | (+)                         |
| Ithytrichia lamellaris *                                                | +                           |
| Psychomyidae -                                                          |                             |
| Psychomyia pusilla *o                                                   | (+)                         |
| Metalype fragilis *                                                     |                             |
| Hydropsychidae -                                                        |                             |
| Hydropsyche pellucidula *o                                              | +++                         |
| H. cf. angustipennis *o (jeunes larves)                                 | +                           |
| Limnephilidae -                                                         |                             |
| Halesus cf. digitatus **, fv                                            | +                           |
| Potamophylax cf. latipennis, ** (carcasse larvaire)                     | (+)                         |
| Sericostomatidae -                                                      |                             |
| Sericostoma cf. personatum ** (carcasse larvaire)                       | (+)                         |
| Brachycetridae -                                                        |                             |
| Micrasema moestum **                                                    | +                           |
| M. cf. setiferum **                                                     | (+)                         |
| Lepidostomatidae -                                                      |                             |
| Lasiocephala cf. basalis *                                              |                             |
| Leptoceridae -                                                          |                             |
| Ceraclea sp, fv *                                                       | +                           |
| Ocetis testacea **                                                      |                             |
|                                                                         |                             |



| Mystacides sp *o fv                 | +    |
|-------------------------------------|------|
| Setodes argentipunctatus, *, fv     |      |
| COLÉOPTÈRES -                       | (+)  |
|                                     |      |
| Gyrinidae - Orectochilus villosus * | ++   |
| Elmidae -                           | ++   |
|                                     |      |
| Elmis maugetii **                   | +    |
| E. aenea *                          | (+)  |
| Esolus parallelepipedus *           | (+)  |
| Dytiscidae -                        |      |
| HÉTÉROPTÈRES -                      |      |
| Gerridae -                          |      |
| Gerris cf. argentatus o* jl,        | +    |
| DIPTÈRES -                          |      |
| Tipulidae -                         |      |
| Tipula lateralis *                  | (+)  |
| T. cf. pruinosa * jl                | (+)  |
| Limoniidae -                        |      |
| Hexatoma bicolor *                  | +    |
| Dicranota robusta *                 | (+)  |
| Eleophila cf. maculata *            | (+)  |
| Ceratopogonidae –                   |      |
| Stilobezzeia cf. ochracea *         | (+)  |
| Psychodidae -                       |      |
| Psychoda cf. severini o             | (+)  |
| Simuliidae -                        |      |
| Simulium ornatum o*                 | +++  |
| S. argyreatum o*                    | (+)  |
| S. bezzii o*                        | +    |
| Empididae -                         |      |
| Wiedemannia bistigma *              | (+)  |
| W. escheri **                       | (+)  |
| Chironomidae -                      |      |
| -Tanypodinae                        | +    |
| - Prodiamesinae                     | (+)  |
| - Orthocldiinae                     | +    |
| - Chironomini                       | +    |
| - Tanytarsini                       | ++++ |
| CRUSTACÉS -                         |      |
| Astacidae -                         |      |
| Astacus leptodactylus o*            | +    |
| Gammaridae -                        |      |
| Gammarus fossarum *                 | ++   |
|                                     |      |
|                                     | 1    |



| MOLLUSQUES -                      |     |
|-----------------------------------|-----|
| Ancylidae -                       |     |
| Ancylus fluviatilis ,*            | ++  |
| Sphaeriidae -                     |     |
| Pisidium casertanum **            | +   |
| P. personatum **                  | +   |
| OLIGOCHÈTES –                     |     |
| Lumbricidae -                     |     |
| Eiseniella tetraedra *            | (+) |
| Lumbriculidae + Tubificidae       | ++  |
| Stylodrilus heringianus           |     |
| T. tubifex                        |     |
| Potamothrix bavaricus,            |     |
| Psammoryctides barbatus           |     |
| Limnodrilus hoffmeisteri          |     |
| Naididae -                        | +   |
| Nais bretscheri                   |     |
| Slavina appendiculata             |     |
| Enchytraeidae -                   | +   |
| HYDRACARIENS -                    | (+) |
| Arrenurus, Atractides, Hydracna * |     |
| NÉMATODES -                       | -   |
|                                   |     |

<sup>(+)/+=</sup> Rare Peu / abondant

fv = fourreau vide

pv=Pupe vide

cv = coquille vide

jl = jeunes larves

<sup>++=</sup> Abondant

<sup>+++/+++ =</sup> Très abondant / Prédominant

<sup>\*/\*\*/\*\*\* =</sup> Valence biologique et écologique.

o = espèce polluo-résistante \*\*\* = espèce polluo-sensible





HYDRO-M 63 Bd Silvio Trentin 31200 Toulouse +33 5 34 45 28 10 www.hydro-m.fr